Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review
Abstract
:1. Introduction
2. Mechanisms behind the Corrosion Protection by the Superhydrophobic Coatings
3. Protective Coatings on Stainless Steels
3.1. Establishing of Protective Propeties
3.2. AISI 316 Stainless Steel
3.3. AISI 304 Stainless Steel
3.4. Less Common Stainless Steels
4. Discussion
- Laser chemical modification is an effective method for creating protective coatings on various types of stainless steel with significantly reduced corrosion currents.
- Superhydrophobic coatings on stainless steel that offer corrosion resistance are typically produced through nanosecond laser treatment. In cases where lasers with shorter pulses are used, the irradiation regime is optimized to cause ablation and mass transfer rather than generating a LIPSS texture on the surface. This suggests that a relatively thick layer of stainless steel must be subjected to laser chemical modification in order to create a better protective barrier layer.
- Physical adsorption of airborne contaminants for hydrophobization is unreliable and generally does not provide long-term corrosion resistance for highly-developed stainless steel surfaces when exposed to corrosive media.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koch, G.; Varney, J.; Thompson, N.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE Int. 2016, 216, 2–3. [Google Scholar]
- Kimbell, L.K.; Wang, Y.; McNamara, P.J. The Impact of Metal Pipe Materials, Corrosion Products, and Corrosion Inhibitors on Antibiotic Resistance in Drinking Water Distribution Systems. Appl. Microbiol. Biotechnol. 2020, 104, 7673–7688. [Google Scholar] [CrossRef] [PubMed]
- Hansson, C.M. The Impact of Corrosion on Society. Metall. Mater. Trans. A 2011, 42, 2952–2962. [Google Scholar] [CrossRef]
- Scully, J.R.; Inman, S.B.; Gerard, A.Y.; Taylor, C.D.; Windl, W.; Schreiber, D.K.; Lu, P.; Saal, J.E.; Frankel, G.S. Controlling the Corrosion Resistance of Multi-Principal Element Alloys. Scr. Mater. 2020, 188, 96–101. [Google Scholar] [CrossRef]
- Avdeev, Y.G.; Kuznetsov, Y.I. Inhibitory Protection of Steels from High-Temperature Corrosion in Acid Solutions. A Review. Part 1. Int. J. Corros. Scale Inhib. 2020, 9, 394–426. [Google Scholar] [CrossRef]
- Tamashov, N.D. Theory of Corrosion and Protection of Metals; Macmillan: New York, NY, USA, 1966. [Google Scholar]
- Fernández-Solis, C.D.; Vimalanandan, A.; Altin, A.; Mondragón-Ochoa, J.S.; Kreth, K.; Keil, P.; Erbe, A. Fundamentals of Electrochemistry, Corrosion and Corrosion Protection. In Soft Matter at Aqueous Interfaces; Lang, P., Liu, Y., Eds.; Lecture Notes in Physics; Springer International Publishing: Cham, Switzerland, 2016; Volume 917, pp. 29–70. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Marmur, A. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not to Be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact Angles and Wettability: Towards Common and Accurate Terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Boinovich, L.B.; Emelyanenko, A.M. Hydrophobic Materials and Coatings: Principles of Design, Properties and Applications. Russ. Chem. Rev. 2008, 77, 583–600. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. [Google Scholar] [CrossRef]
- Latthe, S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces. Langmuir 2005, 21, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.; Emelyanenko, A. Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions. Langmuir 2009, 25, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Emelyanenko, A.M. Superhydrophobic Materials and Coatings. From Basic Researches to Practical Applications. Colloid J. 2022, 84, 375–378. [Google Scholar] [CrossRef]
- Boinovich, L.; Emelyanenko, A. The Prediction of Wettability of Curved Surfaces on the Basis of the Isotherms of the Disjoining Pressure. Colloids Surf. Physicochem. Eng. Asp. 2011, 383, 10–16. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Gnedenkov, S.V.; Alpysbaeva, D.A.; Egorkin, V.S.; Emelyanenko, A.M.; Sinebryukhov, S.L.; Zaretskaya, A.K. Corrosion Resistance of Composite Coatings on Low-Carbon Steel Containing Hydrophobic and Superhydrophobic Layers in Combination with Oxide Sublayers. Corros. Sci. 2012, 55, 238–245. [Google Scholar] [CrossRef]
- Gupta, R.K.; Anandkumar, B.; Choubey, A.; George, R.P.; Ganesh, P.; Upadhyaya, B.N.; Philip, J.; Bindra, K.S.; Kaul, R. Antibacterial and Corrosion Studies on Nanosecond Pulse Laser Textured 304 L Stainless Steel Surfaces. Lasers Manuf. Mater. Process 2019, 6, 332–343. [Google Scholar] [CrossRef]
- Sun, K.; Yang, H.; Xue, W.; He, A.; Zhu, D.; Liu, W.; Adeyemi, K.; Cao, Y. Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel. Appl. Surf. Sci. 2018, 436, 263–267. [Google Scholar] [CrossRef]
- Ukolov, A.I.; Popova, T.N. Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry. Colloid J. 2022, 84, 465–476. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Ivanov, V.K.; Pashinin, A.S. Durable Icephobic Coating for Stainless Steel. ACS Appl. Mater. Interfaces 2013, 5, 2549–2554. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Boinovich, L.B.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A.; Dvoretskaya, O.V. Corrosion Behavior of Superhydrophobic Coatings on Aluminum-Magnesium Alloy in Potassium Iodide Solutions. J. Electrochem. Soc. 2016, 163, C659–C665. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, K.A.; Domantovsky, A.G.; Chulkova, E.V.; Shiryaev, A.A.; Emelyanenko, A.M. Pulsed Laser Induced Triple Layer Copper Oxide Structure for Durable Polyfunctionality of Superhydrophobic Coatings. Adv. Mater. Interfaces 2018, 5, 1801099. [Google Scholar] [CrossRef]
- Emelyanenko, K.A.; Chulkova, E.V.; Semiletov, A.M.; Domantovsky, A.G.; Palacheva, V.V.; Emelyanenko, A.M.; Boinovich, L.B. The Potential of the Superhydrophobic State to Protect Magnesium Alloy against Corrosion. Coatings 2022, 12, 74. [Google Scholar] [CrossRef]
- Ahuir-Torres, J.I.; Arenas, M.A.; Perrie, W.; Dearden, G.; de Damborenea, J. Surface Texturing of Aluminium Alloy AA2024-T3 by Picosecond Laser: Effect on Wettability and Corrosion Properties. Surf. Coat. Technol. 2017, 321, 279–291. [Google Scholar] [CrossRef]
- Cao, X.; Pan, J.; Cai, G.; Hu, Y.; Zhang, X.; Dong, Z. Degradation Mechanisms of Corrosion and Biofouling Resistance of Superhydrophobic Coatings in Harsh Marine Conditions. Prog. Org. Coat. 2022, 173, 107222. [Google Scholar] [CrossRef]
- Ferrari, M.; Benedetti, A. Superhydrophobic Surfaces for Applications in Seawater. Adv. Colloid Interface Sci. 2015, 222, 291–304. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A. Not Simply Repel Water: The Diversified Nature of Corrosion Protection by Superhydrophobic Coatings. Mendeleev Commun. 2017, 27, 254–256. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, J.; Li, B.; Zhao, X.; Zhang, J. Long-Term Corrosion Protection for Magnesium Alloy by Two-Layer Self-Healing Superamphiphobic Coatings Based on Shape Memory Polymers and Attapulgite. J. Colloid Interface Sci. 2021, 594, 836–847. [Google Scholar] [CrossRef]
- Ishizaki, T.; Chiba, S.; Watanabe, K.; Suzuki, H. Corrosion Resistance of Mg–Al Layered Double Hydroxide Container-Containing Magnesium Hydroxide Films Formed Directly on Magnesium Alloy by Chemical-Free Steam Coating. J. Mater. Chem. A 2013, 1, 8968. [Google Scholar] [CrossRef]
- Krishnan, A.; Krishnan, A.V.; Ajith, A.; Shibli, S.M.A. Influence of Materials and Fabrication Strategies in Tailoring the Anticorrosive Property of Superhydrophobic Coatings. Surf. Interfaces 2021, 25, 101238. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Yin, M.; Pu, J.; Yuan, N.; Ding, J. Superhydrophobic and Self-Healing Mg-Al Layered Double Hydroxide/Silane Composite Coatings on the Mg Alloy Surface with a Long-Term Anti-Corrosion Lifetime. Langmuir 2021, 37, 8129–8138. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.; Freudenberg, U.; Schweiß, R.; Küttner, D.; Werner, C. Hydroxide and Hydronium Ion Adsorption—A Survey. Curr. Opin. Colloid Interface Sci. 2010, 15, 196–202. [Google Scholar] [CrossRef]
- Mousavi, S.M.A.; Pitchumani, R. A Study of Corrosion on Electrodeposited Superhydrophobic Copper Surfaces. Corros. Sci. 2021, 186, 109420. [Google Scholar] [CrossRef]
- Ijaola, A.O.; Bamidele, E.A.; Akisin, C.J.; Bello, I.T.; Oyatobo, A.T.; Abdulkareem, A.; Farayibi, P.K.; Asmatulu, E. Wettability Transition for Laser Textured Surfaces: A Comprehensive Review. Surf. Interfaces 2020, 21, 100802. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Modin, E.B.; Sayfutdinova, A.R.; Emelyanenko, K.A.; Vasiliev, A.L.; Emelyanenko, A.M. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties. ACS Nano 2017, 11, 10113–10123. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, D. Material Transformations, Laser Cleaning. In Laser Processing and Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 535–559. [Google Scholar] [CrossRef]
- Müller, F.; Kunz, C.; Gräf, S. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures. Materials 2016, 9, 476. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers—Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef] [Green Version]
- Stratakis, E. Nanomaterials by Ultrafast Laser Processing of Surfaces. Sci. Adv. Mater. 2012, 4, 407–431. [Google Scholar] [CrossRef]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.-C.; Comanns, P.; et al. Laser Engineering of Biomimetic Surfaces. Mater. Sci. Eng. R Rep. 2020, 141, 100562. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Samokhin, A.A. Material Surface Ablation Produced by Ultrashort Laser Pulses. Phys.-Uspekhi 2017, 60, 149–160. [Google Scholar] [CrossRef]
- Correa, D.; Almeida, J.; Almeida, G.; Cardoso, M.; De Boni, L.; Mendonça, C. Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces. Photonics 2017, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Kray, D.; Fell, A.; Hopman, S.; Mayer, K.; Willeke, G.P.; Glunz, S.W. Laser Chemical Processing (LCP)—A Versatile Tool for Microstructuring Applications. Appl. Phys. A 2008, 93, 99–103. [Google Scholar] [CrossRef]
- Kusinski, J.; Kac, S.; Kopia, A.; Radziszewska, A.; Rozmus-Górnikowska, M.; Major, B.; Major, L.; Marczak, J.; Lisiecki, A. Laser Modification of the Materials Surface Layer—A Review Paper. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 711–728. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings. Langmuir 2018, 34, 7059–7066. [Google Scholar] [CrossRef] [PubMed]
- Dudeja, J. Efficient Enhancement of Corrosion Resistance in Steel by Fiber Lasers. Res. Rev. Int. J. Multidiscip. 2018, 3, 679–682. [Google Scholar]
- Li, K.; Myers, N.; Bishop, G.; Li, Y.; Zhao, X. Study of Surface Wettability on Fused Silica by Ultrafast Laser-Induced Micro/Nano-Surface Structures. J. Manuf. Process 2022, 79, 177–184. [Google Scholar] [CrossRef]
- Faas, S.; Bielke, U.; Weber, R.; Graf, T. Scaling the Productivity of Laser Structuring Processes Using Picosecond Laser Pulses at Average Powers of up to 420 W to Produce Superhydrophobic Surfaces on Stainless Steel AISI 316L. Sci. Rep. 2019, 9, 1933. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, A.; Jauch, C.; Azarhoushang, B. Application of an Ultrashort-Pulsed Laser for Generation of Super-Hydrophobic Surfaces. Curr. Dir. Biomed. Eng. 2021, 7, 527–530. [Google Scholar] [CrossRef]
- Serles, P.; Nikumb, S.; Bordatchev, E. Superhydrophobic and Superhydrophilic Functionalized Surfaces by Picosecond Laser Texturing. J. Laser Appl. 2018, 30, 032505. [Google Scholar] [CrossRef]
- Rajab, F.H.; Liauw, C.M.; Benson, P.S.; Li, L.; Whitehead, K.A. Production of Hybrid Macro/Micro/Nano Surface Structures on Ti6Al4V Surfaces by Picosecond Laser Surface Texturing and Their Antifouling Characteristics. Colloids Surf. B Biointerfaces 2017, 160, 688–696. [Google Scholar] [CrossRef]
- Milles, S.; Soldera, M.; Voisiat, B.; Lasagni, A.F. Fabrication of Superhydrophobic and Ice-Repellent Surfaces on Pure Aluminium Using Single and Multiscaled Periodic Textures. Sci. Rep. 2019, 9, 13944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Fan, P.; Zhong, M.; Zhang, H.; Xie, Y.; Lin, C. Superhydrophobic and Colorful Copper Surfaces Fabricated by Picosecond Laser Induced Periodic Nanostructures. Appl. Surf. Sci. 2014, 311, 461–467. [Google Scholar] [CrossRef]
- Jalil, S.A.; Akram, M.; Bhat, J.A.; Hayes, J.J.; Singh, S.C.; ElKabbash, M.; Guo, C. Creating Superhydrophobic and Antibacterial Surfaces on Gold by Femtosecond Laser Pulses. Appl. Surf. Sci. 2020, 506, 144952. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, D.; Wu, Y.; Xue, X.; Liang, C.; Yang, J.; Xing, R. Superhydrophobic Stainless Steel Bipolar Plates with Fractal Structure for Fuel Cells by Nanosecond Laser Ablation. Adv. Eng. Mater. 2022, 24, 2200706. [Google Scholar] [CrossRef]
- Kozioł, P.E.; Antończak, A.J.; Szymczyk, P.; Stępak, B.; Abramski, K.M. Conductive Aluminum Line Formation on Aluminum Nitride Surface by Infrared Nanosecond Laser. Appl. Surf. Sci. 2013, 287, 165–171. [Google Scholar] [CrossRef]
- Lavisse, L.; Sahour, M.C.; Jouvard, J.M.; Pillon, G.; Marco de Lucas, M.C.; Bourgeois, S.; Grevey, D. Growth of Titanium Oxynitride Layers by Short Pulsed Nd:YAG Laser Treatment of Ti Plates: Influence of the Cumulated Laser Fluence. Appl. Surf. Sci. 2009, 255, 5515–5518. [Google Scholar] [CrossRef]
- Szubzda, B.; Antończak, A.; Kozioł, P.; Łazarek, Ł.; Stępak, B.; Łęcka, K.; Szmaja, A.; Ozimek, M. Corrosion Resistance of the AISI 304, 316 and 321 Stainless Steel Surfaces Modified by Laser. IOP Conf. Ser. Mater. Sci. Eng. 2016, 113, 012017. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Emelyanenko, K.A.; Domantovsky, A.G.; Shiryaev, A.A. Comment on “Nanosecond Laser Textured Superhydrophobic Metallic Surfaces and Their Chemical Sensing Applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl. Surf. Sci. 357 (2015) 248–254). Appl. Surf. Sci. 2016, 379, 111–113. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Insights into the Wettability Transition of Nanosecond Laser Ablated Surface under Ambient Air Exposure. J. Colloid Interface Sci. 2019, 533, 268–277. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Z.; Sett, S.; Oh, J.; Cha, H.; Li, L.; Feng, L.; Wu, Y.; Zhao, C.; Orejon, D.; et al. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. ACS Nano 2019, 13, 4160–4173. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Lu, S.; Xu, W.; Szunerits, S.; Boukherroub, R. Controllable Fabrication of Stable Superhydrophobic Surfaces on Iron Substrates. RSC Adv. 2015, 5, 40657–40667. [Google Scholar] [CrossRef]
- Tran, N.G.; Chun, D.-M. Simple and Fast Surface Modification of Nanosecond-Pulse Laser-Textured Stainless Steel for Robust Superhydrophobic Surfaces. CIRP Ann. 2020, 69, 525–528. [Google Scholar] [CrossRef]
- Cardoso, J.T.; Garcia-Girón, A.; Romano, J.M.; Huerta-Murillo, D.; Jagdheesh, R.; Walker, M.; Dimov, S.S.; Ocaña, J.L. Influence of Ambient Conditions on the Evolution of Wettability Properties of an IR-, Ns-Laser Textured Aluminium Alloy. RSC Adv. 2017, 7, 39617–39627. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wu, J. One-Step Fabrication of an Anti-Corrosion Superhydrophobic Surface on Stainless Steel. Mater. Res. Express 2020, 7, 076404. [Google Scholar] [CrossRef]
- Pou, P.; del Val, J.; Riveiro, A.; Comesaña, R.; Arias-González, F.; Lusquiños, F.; Bountinguiza, M.; Quintero, F.; Pou, J. Laser Texturing of Stainless Steel under Different Processing Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Appl. Surf. Sci. 2019, 475, 896–905. [Google Scholar] [CrossRef]
- Zuhlke, C.A.; Anderson, T.P.; Li, P.; Lucis, M.J.; Roth, N.; Shield, J.E.; Terry, B.; Alexander, D.R. Superhydrophobic Metallic Surfaces Functionalized via Femtosecond Laser Surface Processing for Long Term Air Film Retention When Submerged in Liquid; Klotzbach, U., Washio, K., Arnold, C.B., Eds.; SPIE: San Francisco, CA, USA, 2015; p. 93510. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. The Behaviour of Fluoro- and Hydrocarbon Surfactants Used for Fabrication of Superhydrophobic Coatings at Solid/Water Interface. Colloids Surf. Physicochem. Eng. Asp. 2015, 481, 167–175. [Google Scholar] [CrossRef]
- Pan, Q.; Cao, Y.; Xue, W.; Zhu, D.; Liu, W. Picosecond Laser-Textured Stainless Steel Superhydrophobic Surface with an Antibacterial Adhesion Property. Langmuir 2019, 35, 11414–11421. [Google Scholar] [CrossRef]
- He, S.; Shi, J.; Huang, J.; Hu, J.; Lai, Y.; Chen, Z. Rational Designed Structured Superhydrophobic Iron Oxide Surface towards Sustainable Anti-Corrosion and Self-Cleaning. Chem. Eng. J. 2021, 416, 127768. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Lei, Y.; Wang, Y.; Zhou, G.; Xu, C.; Rao, Y.; Wang, K. Preparation of Intricate Nanostructures on 304 Stainless Steel Surface by SiO2-Assisted HF Etching for High Superhydrophobicity. Colloids Surf. Physicochem. Eng. Asp. 2020, 586, 124287. [Google Scholar] [CrossRef]
- Conradi, M.; Sever, T.; Gregorčič, P.; Kocijan, A. Short- and Long-Term Wettability Evolution and Corrosion Resistance of Uncoated and Polymer-Coated Laser-Textured Steel Surface. Coatings 2019, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Matin, A.; Baig, U.; Gondal, M.A.; Akhtar, S.; Zubair, S.M. Superhydrophobic and Superoleophilic Surfaces Prepared by Spray-Coating of Facile Synthesized Cerium(IV) Oxide Nanoparticles for Efficient Oil/Water Separation. Appl. Surf. Sci. 2018, 462, 95–104. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Shagieva, F.M.; Domantovsky, A.G.; Boinovich, L.B. Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion. Appl. Surf. Sci. 2015, 332, 513–517. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Domantovsky, A.G.; Emelyanenko, K.A.; Boinovich, L.B. Synthesis of Wear-Resistant Superhydrophobic Coatings via Laser Micro- and Nanotexturing. Nanotechnol. Russ. 2015, 10, 585–592. [Google Scholar] [CrossRef]
- Tran, N.G.; Chun, D.-M. Ultrafast and Eco-Friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion. ACS Appl. Mater. Interfaces 2022, 14, 28348–28358. [Google Scholar] [CrossRef]
- Ganne, A.; Maslakov, K.I.; Gavrilov, A.I. Anti-Icing Properties of Superhydrophobic Stainless Steel Mesh at Subzero Temperatures. Surf. Innov. 2017, 5, 154–160. [Google Scholar] [CrossRef]
- Trdan, U.; Hočevar, M.; Gregorčič, P. Transition from Superhydrophilic to Superhydrophobic State of Laser Textured Stainless Steel Surface and Its Effect on Corrosion Resistance. Corros. Sci. 2017, 123, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Liu, H.; Yang, H.; Yan, W.; Zhu, W.; Liu, H. Biomimetic Fabrication of Robust Self-Assembly Superhydrophobic Surfaces with Corrosion Resistance Properties on Stainless Steel Substrate. RSC Adv. 2016, 6, 43937–43949. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, Y.; Li, Y.; Yang, L.; Wang, M.; Wang, Y. Nanosecond Laser Fabrication of Superhydrophobic Surface on 316L Stainless Steel and Corrosion Protection Application. Colloids Surf. Physicochem. Eng. Asp. 2020, 604, 125259. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Liu, Z.; Li, B.; Xing, K.; Yang, Z. Study on Selective Laser Melting 316L Stainless Steel Parts with Superhydrophobic Surface. Appl. Surf. Sci. 2020, 533, 147445. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. A Contrastive Investigation on Anticorrosive Performance of Laser-Induced Super-Hydrophobic and Oil-Infused Slippery Coatings. Prog. Org. Coat. 2020, 138, 105313. [Google Scholar] [CrossRef]
- Kedia, S.; Bonagani, S.K.; Majumdar, A.G.; Kain, V.; Subramanian, M.; Maiti, N.; Nilaya, J.P. Nanosecond Laser Surface Texturing of Type 316L Stainless Steel for Contact Guidance of Bone Cells and Superior Corrosion Resistance. Colloid Interface Sci. Commun. 2021, 42, 100419. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, Y.; Wang, L.; Luo, X.; Wang, B.; Song, Q.; Liu, Z. Formation Mechanism of Superhydrophobicity of Stainless Steel by Laser-Assisted Decomposition of Stearic Acid and Its Corrosion Resistance. Opt. Laser Technol. 2022, 153, 108190. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Shiryaev, A.A.; Emelyanenko, K.A.; Dvoretskaya, O.V.; Ganne, A.A. Corrosion Behavior of Superhydrophobic Aluminum Alloy in Concentrated Potassium Halide Solutions: When the Specific Anion Effect Is Manifested. Corros. Sci. 2016, 112, 517–527. [Google Scholar] [CrossRef]
- Su, C.; Wu, W.; Li, Z.; Guo, Y. Prediction of Film Performance by Electrochemical Impedance Spectroscopy. Corros. Sci. 2015, 99, 42–52. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, N.; Zou, J.; Lin, X.; Liu, Z.; Yuan, S.; Yu, Y.; Wang, Z.; Zeng, Q.; Chen, W.; et al. Super-Hydrophobicity and Corrosion Resistance of Laser Surface Textured AISI 304 Stainless Steel Decorated with Hexadecyltrimethoxysilane (HDTMS). Opt. Laser Technol. 2020, 127, 106146. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, B.S.; Jha, P.; Mahanti, A.; Singh, K.; Kain, V.; Sinha, S. Surface Micro-Structuring of Type 304 Stainless Steel by Femtosecond Pulsed Laser: Effect on Surface Wettability and Corrosion Resistance. Appl. Phys. A 2018, 124, 846. [Google Scholar] [CrossRef]
- Singh, A.K.; Suryawanshi, S.R.; More, M.A.; Basu, S.; Sinha, S. Field Emission Study from an Array of Hierarchical Micro Protrusions on Stainless Steel Surface Generated by Femtosecond Pulsed Laser Irradiation. Appl. Surf. Sci. 2017, 396, 1310–1316. [Google Scholar] [CrossRef]
- Armelin, E.; Moradi, S.; Hatzikiriakos, S.G.; Alemán, C. Designing Stainless Steel Surfaces with Anti-Pitting Properties Applying Laser Ablation and Organofluorine Coatings. Adv. Eng. Mater. 2018, 20, 1700814. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, J.; Qi, H.; Yu, J.; Guo, Z.; Ma, Y. Laser-Chemical Treated Superhydrophobic Surface as a Barrier to Marine Atmospheric Corrosion. Surf. Coat. Technol. 2020, 401, 126255. [Google Scholar] [CrossRef]
- Rafieazad, M.; Jaffer, J.; Cui, C.; Duan, X.; Nasiri, A. Nanosecond Laser Fabrication of Hydrophobic Stainless Steel Surfaces: The Impact on Microstructure and Corrosion Resistance. Materials 2018, 11, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sataeva, N.E.; Boinovich, L.B.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M. Laser-Assisted Processing of Aluminum Alloy for the Fabrication of Superhydrophobic Coatings Withstanding Multiple Degradation Factors. Surf. Coat. Technol. 2020, 397, 125993. [Google Scholar] [CrossRef]
- Pilling, N.B.; Bedworth, R.E. The Oxidation of Metals at High Temperatures. J. Inst. Met. 1923, 29, 529–591. [Google Scholar]
Alloy AISI Grade | [Ref] | Laser Wavelength/Pulse Duration | Hydrophobic Agent | Contact Angle, ° | Corrosion Inhibition Efficiency 1 (CIE), % | Coating Corrosion Current (Ic), A/cm2 | Bare Steel Corrosion Current (I0), A/cm2 |
---|---|---|---|---|---|---|---|
316 | [81] | 1064 nm/40 ns | spontaneous | 168 | 59.7 | 2.90 × 10−7 | 7.20 × 10−7 |
316 | [82] | 355 nm/20 ns | FAS 2 | 157 | 99.4 | 3.20 × 10−9 | 5.00 × 10−7 |
316 | [83] | 355 nm/15 ns | FAS | 160 | 98.6 | 2.80 × 10−8 | 2.00 × 10−6 |
316 | [84] | SLM 3 | FAS | 160 | 97.0 | 4.20 × 10−8 | 1.40 × 10−6 |
316 | [85] | 1064 nm/50 ns | FAS | 158 | 89.8 | 4.70 × 10−7 | 4.60 × 10−6 |
316 | [85] | 1064 nm/50 ns | FAS + SLIPS 4 | 106 | 99.7 | 1.60 × 10−8 | 4.60 × 10−6 |
316 | [86] | 532 nm/6 ns | spontaneous | 157 | −31.3 | 4.20 × 10−7 | 3.20 × 10−7 |
316 | [87] | 1064 nm/100 ns | stearic acid | 79.4 | 3.30 × 10−7 | 1.60 × 10−6 | |
316 | [87] | 1064 nm/100 ns | stearic acid decomposition | 154 | 98.6 | 2.20 × 10−8 | 1.60 × 10−6 |
316 | [75] | 1060 nm/28 ns | FAS + TiO2 + epoxy | 155 | - | 2.00 × 10−9 | - |
316 | [75] | 1060 nm/28 ns | spontaneous | 154 | - | 9.00 × 10−9 | - |
304 | [90] | 1064 nm | oxysilane | 158.9 | 95.2 | 1.00 × 10−7 | 2.10 × 10−6 |
304 | [91] | 800 nm/50 fs | spontaneous | 144 | 83.3 | 1.27 × 10−6 | 7.60 × 10−6 |
304 | [19] | 1064 nm/100 ns | spontaneous | 110 | 92.0 | 1.20 × 10−8 | 1.50 × 10−7 |
304 | [68] | unspecified/120 ns | spontaneous (sealing bag) | 161 | −917 | 5.90 × 10−5 | 5.80 × 10−6 |
420 | [72] | 515 nm/10 ps | stearic acid | 163 | |||
1095 | [94] | 1064 nm/20 ns | fluorosilane | 160 | 94.6 | 2.90 × 10−8 | 5.40 × 10−7 |
17–1 | [95] | 1060 nm/60 ns | fluoroorganic | 145 | −280 | 3.80 × 10−6 | 1.00 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emelyanenko, K.A.; Emelyanenko, A.M.; Boinovich, L.B. Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review. Coatings 2023, 13, 194. https://doi.org/10.3390/coatings13010194
Emelyanenko KA, Emelyanenko AM, Boinovich LB. Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review. Coatings. 2023; 13(1):194. https://doi.org/10.3390/coatings13010194
Chicago/Turabian StyleEmelyanenko, Kirill A., Alexandre M. Emelyanenko, and Ludmila B. Boinovich. 2023. "Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review" Coatings 13, no. 1: 194. https://doi.org/10.3390/coatings13010194
APA StyleEmelyanenko, K. A., Emelyanenko, A. M., & Boinovich, L. B. (2023). Laser Obtained Superhydrophobic State for Stainless Steel Corrosion Protection, a Review. Coatings, 13(1), 194. https://doi.org/10.3390/coatings13010194