Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating
Abstract
:1. Introduction
- –
- Maintain the sacrificial character of the Al-Zr coating and consequently its corrosion potential must always be more electronegative than that of steel. The protection threshold defined by the corrosion potential specific to the steel must not be exceeded.
- –
- Extend the lifetime of the sacrificial coating by widening the passive range and positively shifting the pitting potential with keeping it lower than the corrosion potential of the steel. Thus, localized pitting corrosion of the Al-Zr coating will take place at higher potentials and the lifetime of the coating will be extended due to the passive film maintaining for a wider potential range, retarding the growth stable pits.
- –
- Improve the mechanical properties of the Al-Zr sacrificial coating that has a weak hardness.
2. Materials and Methods
2.1. Al-Zr Coating Deposition
2.2. Al2O3, ZnO, and TiO2 Atomic Layer Deposition
2.3. PVD/ALD, ALD/PVD, and PVD/ALD/PVD Architectured Coatings Deposition
2.4. Coatings Characterization
3. Results
3.1. Coatings Morphology and Surface Topography
3.2. Structural Analysis
3.3. Mechanical Properties
3.4. Surface Wettability Behavior
3.5. Corrosion Behavior
- First, the Cl− ions will adsorb on the passive Zr-enriched film native to the surface of the upper AlZr layer of the Al2O3/AlZr coating. The breakdown of this passive film will lead to corrosion of the Al-Zr layer. This is consistent with the increase in the coating OCP from −700 to −670 mV/SCE. At this stage, the steel is susceptible to pitting corrosion, but as the Al2O3 layer forms a dense barrier to the way of electrolytes, the steel is protected against corrosion.
- The Al2O3 film, being sensitive for dissolution [52] with a dissolution rate which can reach up to 7 ± 1 nm/h in a solution of NaCl [36], dissolves with time. The dissolution of the Al2O3 will restore the galvanic coupling between the AlZr and the steel. This may justify the shape of the OCP curve of the Al2O3/AlZr coating, which decreases over time and the shift in the corrosion potential towards more negative values than those observed with the ZnO/AlZr and TiO2/AlZr coatings.
- Following the dissolution of the Al2O3 layer, the AlZr layer corrodes for the sacrifice of the steel and the transfer of charges (electrons) to the steel will be restored.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, E.; Lanzutti, A.; Paussa, L.; Guzman, L.; Fedrizzi, L. Long term performance of atomic layer deposition coatings for corrosion protection of stainless steel. Mater. Corros. 2015, 66, 907–914. [Google Scholar] [CrossRef]
- Bordji, K.; Jouzeau, J.-Y.; Mainard, D.; Payan, E.; Delagoutte, J.-P.; Netter, P. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials 1996, 17, 491–500. [Google Scholar] [CrossRef]
- Mojarad Shafiee, B.; Torkaman, R.; Mahmoudi, M.; Emadi, R.; Derakhshan, M.; Karamian, E.; Tavangarian, F. Surface modification of 316L SS implants by applying bioglass/gelatin/polycaprolactone composite coatings for biomedical applications. Coatings 2020, 10, 1220. [Google Scholar] [CrossRef]
- Staszuk, M.; Pakuła, D.; Reimann, Ł.; Kloc-Ptaszna, A.; Pawlyta, M.; Kříž, A. Structure and properties of TiO2/NanoTiO2 bimodal coatings obtained by a hybrid PVD/ALD method on 316L steel substrate. Materials 2021, 14, 4369. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wei, L.; Jiang, Y.; Li, Q.; Luo, H. Corrosion mechanism of additively manufactured 316 L stainless steel in 3.5 Wt.% NaCl solution. Mater. Today Commun. 2021, 26, 101648. [Google Scholar] [CrossRef]
- Sander, G.; Cruz, V.; Bhat, N.; Birbilis, N. On the in-situ characterisation of metastable pitting using 316L stainless steel as a case study. Corros. Sci. 2020, 177, 109004. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Lekka, M.; Guzman, L.; Ensinger, W.; Fedrizzi, L. Chemical and mechanical characterization of TiO2/Al2O3 atomic layer depositions on AISI 316 L stainless steel. Surf. Coat. Technol. 2012, 211, 84–88. [Google Scholar] [CrossRef]
- Kong, J.; Li, C.; Sun, X.; Xuan, Y.; Zhai, H.; Li, A.; Wang, Q.; Zhou, F. Improved tribological properties and corrosion protection of CrN coating by ultrathin composite oxide interlayer. Appl. Surf. Sci. 2021, 541, 148606. [Google Scholar] [CrossRef]
- Pedeferri, P. Cathodic and anodic protection. In Corrosion Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 383–422. [Google Scholar] [CrossRef]
- Xi, Y.; Jia, M.; Zhang, J.; Zhang, W.; Yang, D.; Sun, L. Evaluating the performance of aluminum sacrificial anodes with different concentration of gallium in artificial sea water. Coatings 2022, 12, 53. [Google Scholar] [CrossRef]
- Navinšek, B.; Panjan, P.; Milošev, I. PVD Coatings as an environmentally clean alternative to electroplating and electroless processes. Surf. Coat. Technol. 1999, 119, 476–487. [Google Scholar] [CrossRef]
- Perez, A.; Billard, A.; Rébéré, C.; Berziou, C.; Touzain, S.; Creus, J. Influence of metallurgical states on the corrosion behaviour of Al–Zn PVD coatings in saline solution. Corros. Sci. 2013, 74, 240–249. [Google Scholar] [CrossRef]
- Sukiman, N.L.; Zhou, X.; Birbilis, N.; Hughes, A.E.; Mol, J.M.C.; Garcia, S.J.; Thompson, G.E. Durability and corrosion of aluminium and its alloys: Overview, property space, techniques and developments. In Aluminium Alloys—New Trends in Fabrication and Applications; IntechOpen: London, UK, 2013; ISBN 978-953-51-0861-0. [Google Scholar]
- Sanchette, F.; Czerwiec, T.; Billard, A.; Frantz, C. Sputtering of Al-Cr and Al-Ti composite targets in pure Ar and in reactive Ar-N2 plasmas. Surf. Coat. Technol. 1997, 96, 184–190. [Google Scholar] [CrossRef]
- Sanchette, F.; Billard, A.; Frantz, C. Mechanically reinforced and corrosion-resistant sputtered amorphous aluminium alloy coatings. Surf. Coat. Technol. 1998, 98, 1162–1168. [Google Scholar] [CrossRef]
- Sanchette, F.; Billard, A. Main features of magnetron sputtered aluminium–transition metal alloy coatings. Surf. Coat. Technol. 2001, 142–144, 218–224. [Google Scholar] [CrossRef]
- Creus, J.; Billard, A.; Sanchette, F. Corrosion behaviour of amorphous Al–Cr and Al–Cr–(N) coatings deposited by Dc magnetron sputtering on mild steel substrate. Thin Solid Films 2004, 466, 1–9. [Google Scholar] [CrossRef]
- Perez, A.; Sanchette, F.; Billard, A.; Rébéré, C.; Berziou, C.; Touzain, S.; Creus, J. Comparison of the intrinsic properties of EBPVD Al–Ti and Al–Mg coatings. Mater. Chem. Phys. 2012, 132, 154–161. [Google Scholar] [CrossRef]
- Reffass, M.; Berziou, C.; Rébéré, C.; Billard, A.; Creus, J. Corrosion behaviour of magnetron-sputtered Al1−x–Mnx coatings in neutral saline solution. Corros. Sci. 2010, 52, 3615–3623. [Google Scholar] [CrossRef]
- Villardi de Oliveira, C. Development of Multifunctional Coatings Combining Anticorrosion and Antibiofouling Properties. Ph.D. Thesis, Université de Technologie de Troyes, Troyes, France, 2019. NNT: 2019TROY0034. Available online: https://theses.hal.science/tel-03624526 (accessed on 10 October 2022).
- Villardi de Oliveira, C.; Migot, S.; Alhussein, A.; Jiménez, C.; Schuster, F.; Ghanbaja, J.; Sanchette, F. Structural and microstructural analysis of bifunctional TiO2/Al-Zr thin film deposited by hybrid process. Thin Solid Films 2020, 709, 138255. [Google Scholar] [CrossRef]
- Villardi de Oliveira, C.; Alhussein, A.; Creus, J.; Schuster, F.; Schlegel, M.L.; Dong, Z.; Jiménez, C.; Sanchette, F. Bifunctional TiO2/AlZr thin films on steel substrate combining corrosion resistance and photocatalytic properties. Coatings 2019, 9, 564. [Google Scholar] [CrossRef]
- Perez, A. Influence de La Nanostructuration Sur Le Comportement à La Corrosion de Revêtements Multicouches Élaborés Par PVD. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2011. NNT: 2011LAROS334. Available online: https://theses.hal.science/tel-00697016 (accessed on 10 October 2022).
- Yoshioka, H.; Habazaki, H.; Kawashima, A.; Asami, K.; Hashimoto, K. The corrosion behavior of sputter-deposited Al-Zr alloys in 1 M HCl solution. Corros. Sci. 1992, 33, 425–436. [Google Scholar] [CrossRef]
- Creus, J.; Berziou, C.; Cohendoz, S.; Perez, A.; Rébéré, C.; Reffass, M.; Touzain, S.; Allely, C.; Gachon, Y.; Héau, C.; et al. Reactivity classification in saline solution of magnetron sputtered or EBPVD pure metallic, nitride and Al-based alloy coatings. Corros. Sci. 2012, 57, 162–173. [Google Scholar] [CrossRef]
- Ma, B.; Qi, X.; Li, R.; Zhang, R.; Shang, H. The Zr alloying effect on microstructure evolution and mechanical properties of nanostructured Al-Zr alloyed films. J. Alloys Compd. 2021, 858, 157707. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of growth defects in thin films prepared by PVD techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Cremers, V.; Puurunen, R.L.; Dendooven, J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev. 2019, 6, 021302. [Google Scholar] [CrossRef] [Green Version]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Potts, S.E.; Schmalz, L.; Fenker, M.; Díaz, B.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Radnóczi, G.; Tóth, L.; et al. Ultra-thin aluminium oxide films deposited by plasma-enhanced atomic layer deposition for corrosion protection. J. Electrochem. Soc. 2011, 158, 132–138. [Google Scholar] [CrossRef]
- Díaz, B.; Härkönen, E.; Światowska, J.; Seyeux, A.; Maurice, V.; Ritala, M.; Marcus, P. Corrosion properties of steel protected by nanometre-thick oxide coatings. Corros. Sci. 2014, 82, 208–217. [Google Scholar] [CrossRef]
- Mirhashemihaghighi, S.; Światowska, J.; Maurice, V.; Seyeux, A.; Zanna, S.; Salmi, E.; Ritala, M.; Marcus, P. Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. Corros. Sci. 2016, 106, 16–24. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Seo, K.-M.; Kim, S.-H.; Ansari, S.A. Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: A review. Nanomaterials 2022, 12, 1873. [Google Scholar] [CrossRef]
- Daubert, J.S.; Hill, G.T.; Gotsch, H.N.; Gremaud, A.P.; Ovental, J.S.; Williams, P.S.; Oldham, C.J.; Parsons, G.N. Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 4192–4201. [Google Scholar] [CrossRef]
- Marin, E.; Fedrizzi, L. Atomic layer deposition an innovative technology to improve corrosion and surface functionalities of alloys. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 79–89. ISBN 9780124095472. [Google Scholar]
- Díaz, B.; Härkönen, E.; Maurice, V.; Światowska, J.; Seyeux, A.; Ritala, M.; Marcus, P. Failure mechanism of thin Al2O3 coatings grown by atomic layer deposition for corrosion protection of carbon steel. Electrochim. Acta 2011, 56, 9609–9618. [Google Scholar] [CrossRef]
- Matero, R.; Ritala, M.; Leskelä, M.; Salo, T.; Aromaa, J.; Forsén, O. Atomic layer deposited thin films for corrosion protection. Le J. Phys. IV 1999, 09, 493–499. [Google Scholar] [CrossRef]
- Shan, C.X.; Hou, X.; Choy, K.-L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 2008, 202, 2399–2402. [Google Scholar] [CrossRef]
- Merisalu, M.; Aarik, L.; Kozlova, J.; Mändar, H.; Tarre, A.; Sammelselg, V. Effective corrosion protection of aluminum alloy AA2024-T3 with novel thin nanostructured oxide coating. Surf. Coat. Technol. 2021, 411, 126993. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Guzman, L.; Fedrizzi, L. Corrosion protection of AISI 316 stainless steel by ALD alumina/titania nanometric coatings. J. Coat. Technol. Res. 2011, 8, 655–659. [Google Scholar] [CrossRef]
- Alam, M.W.; Ansari, M.Z.; Aamir, M.; Waheed-Ur-Rehman, M.; Parveen, N.; Ansari, S.A. Preparation and characterization of Cu and Al doped ZnO thin films for solar cell applications. Crystals 2022, 12, 128. [Google Scholar] [CrossRef]
- Kong, J.-Z.; Yin, L.; Xuan, Y.; Li, A.-D.; Wang, Q.-Z.; Zhou, F. Atomic layer-deposited Al2O3 interlayer for improved tribological and anti-corrosion properties of TiN hard coating on 316L stainless steel. J. Mater. Eng. Perform. 2019, 28, 7058–7067. [Google Scholar] [CrossRef]
- Wang, P.C.; Cheng, T.C.; Lin, H.C.; Chen, M.J.; Lin, K.M.; Yeh, M.T. Effects of pre-sputtered Al interlayer on the atomic layer deposition of Al2O3 films on Mg–10Li–0.5Zn alloy. Appl. Surf. Sci. 2013, 270, 452–456. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, T.F.; Ding, J.C.; Kim, C.-M.; Park, S.-W.; Yang, Y.; Kim, K.-H.; Kwon, S.-H. Enhanced corrosion resistance of PVD-CrN coatings by ALD sealing layers. Nanoscale Res. Lett. 2017, 12, 248. [Google Scholar] [CrossRef]
- Härkönen, E.; Kolev, I.; Díaz, B.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Fenker, M.; Toth, L.; Radnoczi, G.; et al. Sealing of hard CrN and DLC coatings with atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 1893–1901. [Google Scholar] [CrossRef]
- Dai, W.; Wang, Q.; Kim, K.-H.; Kwon, S.-H. Al2O3/CrAlSiN multilayer coating deposited using hybrid magnetron sputtering and atomic layer deposition. Ceram. Int. 2019, 45, 11335–11341. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, T.F.; Lee, H.-B.-R.; Yang, J.H.; Choi, W.C.; Han, B.; Kim, K.H.; Kwon, S.-H. Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer. ACS Appl. Mater. Interfaces 2015, 7, 26716–26725. [Google Scholar] [CrossRef] [PubMed]
- Kaady, E.; Alhussein, A.; Bechelany, M.; Habchi, R. Al2O3-ZnO atomic layer deposited nanolaminates for improving mechanical and corrosion properties of sputtered CrN coatings. Thin Solid Films 2022, 759, 139476. [Google Scholar] [CrossRef]
- Hones, P. Structural and Electronic Properties of Transition Metal Nitride with Emphasis on Chromium Nitride Based Thin Films. Ph.D. Thesis, EPFL de Lausanne, Lausanne, Switzerland, 2000. [Google Scholar]
- Kong, J.-Z.; Zhai, Q.-W.; Shen, J.-J.; Sun, X.-Y.; Cao, Y.-Q.; Xuan, Y.; Li, A.-D.; Wang, Q.-Z.; Zhou, F. Role of atomic layer deposited TiOxNy interlayer in tribological and corrosion properties of CrN coating. Surf. Coat. Technol. 2022, 429, 127981. [Google Scholar] [CrossRef]
- Lasalmonie, A.; Strudel, J.L. Influence of grain size on the mechanical behaviour of some high strength materials. J. Mater. Sci. 1986, 21, 1837–1852. [Google Scholar] [CrossRef]
- Kim, L.H.; Kim, K.; Park, S.; Jeong, Y.J.; Kim, H.; Chung, D.S.; Kim, S.H.; Park, C.E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 6731–6738. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem. 2015, 8, 749–765. [Google Scholar] [CrossRef]
Sample | Lattice Parameter (Å) | Crystallite Size (nm) | Texture Coefficient | |||
---|---|---|---|---|---|---|
(111) | (200) | (220) | (311) | |||
0 | 4.066 | 58 ± 4 | 0.37 | 2.98 | 0.32 | 0.33 |
1 | 4.065 | 51 ± 3 | 0.90 | 2.12 | 0.71 | 0.26 |
2 | 4.065 | 48 ± 3 | 1.0 | 2.32 | 0.42 | 0.26 |
3 | 4.065 | 49 ± 3 | 1.18 | 1.45 | 0.87 | 0.50 |
7 | 4.064 | 44 ± 1 | 0.90 | 2.15 | 0.56 | 0.39 |
8 | 4.061 | 43 ± 2 | 0.63 | 2.68 | 0.35 | 0.34 |
9 | 4.062 | 44 ± 2 | 0.70 | 2.36 | 0.60 | 0.34 |
Sample | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
H (GPa) | 1.6 ± 0.2 | 2.7 ± 0.1 | 2.6 ± 0.2 | 2.6 ± 0.1 | 2.7 ± 0.2 | 2.6 ± 0.2 | 2.5 ± 0.2 | 2.8 ± 0.3 | 2.5 ± 0.1 | 2.5 ± 0.1 |
Er (GPa) | 89 ± 5 | 112 ± 4 | 110 ± 6 | 113 ± 3 | 85 ± 3 | 84 ± 4 | 83 ± 4 | 109 ± 5 | 100 ± 5 | 111 ± 5 |
H/Er (×10−3) | 18 ± 2 | 24 ± 1 | 24 ± 2 | 23 ± 1 | 32 ± 3 | 31 ± 3 | 30 ± 3 | 25 ± 3 | 25 ± 2 | 23 ± 1 |
H3/Er2 (×10−4 GPa) | 5 ± 2 | 16 ± 2 | 15 ± 4 | 14 ± 2 | 27 ± 6 | 25 ± 6 | 23 ± 5 | 17 ± 5 | 16 ± 2 | 13 ± 2 |
Sample | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Ecorr (mV/SCE) | −670 | −939 | −743 | −729 | −670 | −490 | −586 | −796 | −794 | −745 |
Icorr (×10−2 µA·cm−2) | 66 | 5.2 | 2.8 | 4.2 | 1.8 | 3 | 2.8 | 1.4 | 2.2 | 2.1 |
Epit (mV/SCE) | −485 | −365 | −306 | −600 | −343 | −285 | −137 | −130 | −302 | −576 |
Passivation width (mV/SCE) | 115 | 520 | 394 | 90 | 300 | 130 | 290 | 620 | 439 | 134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaady, E.; Habchi, R.; Bechelany, M.; Zgheib, E.; Alhussein, A. Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating. Coatings 2023, 13, 65. https://doi.org/10.3390/coatings13010065
Kaady E, Habchi R, Bechelany M, Zgheib E, Alhussein A. Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating. Coatings. 2023; 13(1):65. https://doi.org/10.3390/coatings13010065
Chicago/Turabian StyleKaady, Elias, Roland Habchi, Mikhael Bechelany, Elia Zgheib, and Akram Alhussein. 2023. "Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating" Coatings 13, no. 1: 65. https://doi.org/10.3390/coatings13010065
APA StyleKaady, E., Habchi, R., Bechelany, M., Zgheib, E., & Alhussein, A. (2023). Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating. Coatings, 13(1), 65. https://doi.org/10.3390/coatings13010065