Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pryliński, M. Vademecum Materiałoznawstwa Protetycznego; Med Tour Press International: Otwock, Poland, 2020; pp. 124–129. [Google Scholar]
- Albert, F.E.; El-Mowafy, O.M. Marginal adaptation and microleage of Procera AllCeram crowns with four cements. Int. J. Prosthodont. 2004, 17, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Bosso Andre, C.; Agular, T.R.; Ayres, A.P.; Bovi Ambrosano, G.M.; Giannini, M. Bond strength of self-adhesive resincements to dry and moist dentin. Braz. Oral Res. 2013, 27, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, T.R.; Di Francescantonino, M.; Ambrosano, G.M.B.; Giannini, M. Effect of curing mode on bond strength of self-adhesive resin luting cements to dentin. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Pisani-Proenca, J.; Erhard, M.C.; Amaral, R.; Valandro, L.F.; Bottino, M.A.; Del Castillo-Salmerón, R. Influence of different surface conditioning protocols on microtensile bond strength of self-adhesive resin cements to dentin. J. Prosthet. Dent. 2011, 105, 227–235. [Google Scholar] [CrossRef]
- Vaz, R.R.; Hipólito, V.D.; D’Alpino, P.H.; Goes, M.F. Bond strength and interfacial micromorphology of etch-and-rinse and self-adhesive resin cements to dentin. J. Prosthodont. 2012, 21, 101–111. [Google Scholar] [CrossRef]
- Duarte, S., Jr.; Botta, A.C.; Meire, M.; Sadan, A. Microtensil bond strengths and scanning electron microscopic evaluation of self-adhesive and self-etch resin cements so intact and etched enamel. J. Prosthet. Dent. 2008, 10, 203–210. [Google Scholar] [CrossRef]
- Marzec-Gawron, M.; Michalska, S.; Dejak, B. Properties of contemporary resin cements and their adhesion to enamel and dentin. Prosthodontics 2012, LXII, 173–180. [Google Scholar] [CrossRef]
- Kuhn, H.J.; Braslovsky, S.E.; Schmidt, R. Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105–2146. [Google Scholar] [CrossRef]
- Karjalainen, S. Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Build. Environ. 2007, 4, 1594–1603. [Google Scholar] [CrossRef]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S.A. The well-bulit clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12. [Google Scholar] [CrossRef]
- Nishikawa-Pacher, A. Research Questions with PICO: A Universal Mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamsheer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ozer, F.; Ovecoglu, H.S.; Deneshmehr, L.; Sinmazisik, G.; Kashyap, K.; Iriboz, E.; Blatz, M.B. Effect of storage temperature on the shelf life of self-adhesive resin cements. J. Adhes. Dent. 2015, 17, 545–550. [Google Scholar] [CrossRef]
- Øllo, G.; Ørstavik, D. The temperature of cement specimens and its influence on measured strength. Dent. Mater. 1985, 1, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Bausch, J.R.; de Lange, C.; Davidson, C.L. The influence of the temperature on some physical properties of dental composites. J. Oral Rehabil. 1981, 8, 309–317. [Google Scholar] [CrossRef]
- Żuławnik, A.; Cierech, M.; Rączkiewicz, M. Effect of temperature increase of composite materials on the quality of adhesive cementation—Review of literature. Prosthodontics 2019, 69, 437–443. [Google Scholar] [CrossRef]
- Naumova, E.A.; Ernst, S.; Schaper, K.; Arnold, W.H.; Piwowarczyk, A. Adhesion of different resin cements to enamel and dentin. Dent. Mater. J. 2016, 35, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Rohr, N.; Fischer, J. Tooth surface treatment strategie for adhesive cementation. J. Adv. Prosthodont. 2017, 9, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Skąpska, A.; Sochacka, A.; Ziopaja, A.; Komorek, Z.; Cierech, M. Comparative analysis of selected mechanical properties of preheated composite material and self-adhesive composite cement—Pilot study. Prosthodontics 2020, 70, 281–288. [Google Scholar] [CrossRef]
- Moldovan, M.; Balazsi, R.; Soanca, A.; Roman, A.; Sarosi, C.; Prodan, D.; Cojocaru, I.; Saceleanu, V.; Cristescu, I. Evaluation of degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials 2019, 12, 2109. [Google Scholar] [CrossRef]
- Skąpska, A.; Komorek, Z.; Cierech, M.; Mierzwińska-Nastalska, E. Comparison of mechanical properties of self-adhesive composite cement and heated composite material. Polymers 2022, 14, 2686. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e51–e59. [Google Scholar] [CrossRef] [PubMed]
- Ayub, K.V.; Santos GCIr Rizkalla, A.S.; Bohay, R.; Pegoraro, L.F.; Rubo, J.H.; Santos, M.J. Effect of preheating on microhardness and viscosity of four resin composites. J. Can. Dent. Assoc. 2014, 80, e12. [Google Scholar]
- Mufnoz, C.A.; Bond, P.R.; Sy-Munoz, J.; Tan, D.; Peterson, J. Effect of pre-heating on depth of cure and surface hardness of light polymerized resin composites. Am. J. Dent. 2008, 21, 215–222. [Google Scholar]
- Wagner, W.; Asku, M.; Neme, A.M.L.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-haeting resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Morais, A.; Santos, A.; Giannini, M.; Reis, A.F.; Rodrigues, J.A.; Arrais, C.A. Effect of pre-heated dual-cured resin cements on the bond strength of indirect restorations to dentin. Bras. Oral Res. 2012, 26, 170–176. [Google Scholar] [CrossRef]
- Shoja-Assadi, F.T.; Lea, S.C.; Burke, F.J.; Palin, W.M. Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. J. Dent. 2010, 38, 490–495. [Google Scholar] [CrossRef]
- Khoroushi, M.; Karvandi, T.M.; Sadeghi, R. Effect of prewarming and/or delayed light activation on resin-modified glass ionomer bond strength to tooth structures. Oper. Dent. 2012, 37, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Gavic, L.; Gorseta, K.; Glavina, D.; Czrnecka, B.; Nicholson, J.W. Heat transfer properties and thermal cure glass-ionomer dental cements. J. Mater. Sci. Mater. Med. 2015, 26, 249. [Google Scholar] [CrossRef]
- El-Deeb, H.A.; Abd El-Azis, S.; Mobarak, E.H. Effect of preheating low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin. J. Adv. Res. 2015, 6, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karacan, A.O.; Ozyurt, P. Effect of preheated bulk-fill composite temperature on intrapulpal temperature increase in vitro. J. Esthet. Restor. Dent. 2019, 31, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, A.; Zaljezic, D.; Kopjar, N.; Duarte, S., Jr.; Par, M.; Tarle, Z. Toxicity of pre-heated composites polymerized directly and through CAD/CAM overlay. Acta Stomatol. Croat. 2018, 52, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Gross, D.J.; Davila-Sanchez, A.; Runnacles, P.; Zarpellon, D.C.; Kiratcz, F.; Campagnoli, E.B.; Alegria-Acevedo, L.F.; Coelho, U.; Rueggeberg, F.A.; Arrais, C. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing inits. Dent. Mater. 2020, 36, 1201–1213. [Google Scholar] [CrossRef]
- Froes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F.; Giudici, R. Plymerization kinetics of pre-heated composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to preheating composites. J. Esthet. Restor. Dent. 2006, 18, 340–350. [Google Scholar] [CrossRef]
- Blalock, J.S.; Holmes, R.G.; Rueggeberg, F.A. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006, 96, 424–432. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Hall De Goes, M.F. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 2007, 23, 1283–1288. [Google Scholar] [CrossRef]
- Franca, F.A.; de Oliveira, M.; Rodriges, J.A.; Arrals, C.A. Pre-heated dual-cured resin cements: Analysis of the degree of conversion and ultimate tensile strength. Braz. Oral Res. 2011, 25, 174–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruyter, I.E. Methacrylate-based polymeric denetal materials: Conversion and related properties. Summary and review. Acta Odontol. Scan. 1982, 40, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Mileding, P.; Ortengren, U.; Karlsson, S. Ceramic inlay systems: Some clinical aspects. J. Oral Rehabil. 1995, 22, 571–580. [Google Scholar] [CrossRef]
- Ferracane, J.L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater. 1985, 1, 11–14. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Dual-cure resin cements: In vitro wear and effect of quantity of remaining double bonds, filler volume and light curing. Acta Odontol. Scand. 1995, 53, 29–34. [Google Scholar] [CrossRef]
- Goulart, M.; Borges Veleda, B.; Damin, D.; Bovi Ambrosano, G.M.; Coelho de Souza, F.H.; Guilherme Erhardt, M.C. Preheated composite resin used as a luting agent for indirect restorations: Effects on bond strength and resin-dentin interfaces. Int. J. Esthet. Dent. 2018, 13, 86–97. [Google Scholar]
- Mohammadi, M.; Jafari-Navimipour, E.; Kimyai, S.; Ajami, A.A.; Bahari, M.; Ansarin, M. Effect of preheating on the mechanical properties of silorane-based and methacrylate-based composites. J. Clin. Exp. Dent. 2016, 8, e373–e378. [Google Scholar] [CrossRef] [Green Version]
- Lucey, S.; Lynch, C.D.; Ray, N.J.; Burke, F.M.; Hannigan, A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J. Oral Rehabil. 2010, 37, 278–282. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Gauza-Włodarczyk, M.; Kubisz, L.; Hędzelek, W. The electrical properties and glass transition of some dental materials after temperature exposure. J. Mater. Sci. Mater. Med. 2017, 28, 186. [Google Scholar] [CrossRef]
- Sharafeddin, F.; Motamedi, M.; Fattah, Z. Effect of preheating and precooling on the flexural strength and modulus of elasticity of nanohybrid and silorane-based composite. J. Dent. 2015, 16, 224–229. [Google Scholar]
- Davari, A.; Daneshkazemi, A.; Behniafar, B.; Sheshmani, M. Effect of pre-heating on microtensile bond, strength of composite resin to dentin. J. Dent. 2014, 11, 569–575. [Google Scholar]
- da Costa, J.; Mcpharlin, R.; Hilton, T.; Ferracane, J. Effect of heat on the flow of commercial composites. Am. J. Dent. 2009, 22, 92–96. [Google Scholar]
- Kramer, M.R.; Edelhoff, D.; Stawarczyk, B. Flexural strength of preheated resin composites and bonding properties to glass-ceramic and dentin. Materials 2016, 9, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, N.; Kamat, S.; Mangala, T.M.; Thomas, M. Effect of pre-heating composite resin on gap formation at three different temperatures. J. Conserv. Dent. 2011, 14, 191–195. [Google Scholar] [CrossRef]
- Jongsma, L.A.; Kleveraan, C.J. Influence of temperature on volumetric shrinkage and constraction stress of dental composites. Dent. Mater. 2015, 31, 721–725. [Google Scholar] [CrossRef]
- Ahn, K.H.; Lim, S.; Kum, K.Y.; Chang, S.W. Effect of preheating on the viscoelastic properties of dental composite under different deformation conditions. Dent. Mater. J. 2015, 34, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Staansbury, J.W. Curing dental resin and composites by photopolymerization. J. Esthet. Dent. 2020, 12, 300–308. [Google Scholar] [CrossRef]
- Cheung, K.C.; Darvell, B.W. Sintering of dental porcelain: Effect of time and temperature on appearance and porosity. Dent. Mater. 2002, 18, 163–173. [Google Scholar] [CrossRef]
- Theobaldo, J.D.; Aguiar, F.H.B.; Pini, N.I.P.; Lima, D.A.N.L.; Liporoni, P.C.S.; Catelan, A. Effect of preheating and light-curing unit on physicochemical properties of a bulk-fill composite. Clin. Cosmet. Investig. Dent. 2017, 16, 39–43. [Google Scholar] [CrossRef] [Green Version]
- El-Korashy, D.I. Post-gel shrinkage strain and degree oh conversion of preheated resin composite cured using different regimens. Oper. Dent. 2010, 35, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, N.; Pallavi, R.Y.; Kavitha, S.; Lakshmi Narayanan, L. Degree of conversion and residual stress of preheated and room-temperature composites. Indian J. Dent. Res. 2007, 18, 173–176. [Google Scholar] [CrossRef]
- Silva, J.C.; Rogerio Vieira, R.; Rege, I.C.; Cruz, C.A.; Vaz, L.G.; Estrela, C.; Castro, F.L. Pre-heating mitigates composite degradation. J. Appl. Oral Sci. 2015, 23, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- da Silva-Junior, M.E.; de Fz, L.R.; Bagnato, V.S.; Tonetto Mr Simoes, F.; Borges, A.H.; Bandeca, M.C.; de Andrade, M.F. Effect of the curing temperature of dental composites evaluated with a fluorescent dye. J. Contemp. Dent. Pract. 2018, 19, 3–12. [Google Scholar] [CrossRef]
- Taubock, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Loher, H.; Kolbeck, C.; Trempler, C.; Stemplinger, B.; Kopzon, V.; Handel, G. Changes of cement properties by mixing errors: The therapeutic range of different cement types. Dent. Mater. 2008, 24, 1187–1193. [Google Scholar] [CrossRef]
- Vrohari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Curing efficiency of four self-etching, self adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef]
- Bocci, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S. Thio-urethanes improve properties of dual-cured composite cements. J. Dent. Res. 2014, 93, 1320–1325. [Google Scholar] [CrossRef]
- Yoon, T.H.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Degree of polymerization of resin composites by different light sources. J. Oral Rehabil. 2002, 29, 1165–1173. [Google Scholar] [CrossRef]
- Silikas, N.; Eliades, G.; Watts, D.C. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 2000, 16, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Rahiotis, C.; Kramer, N.; Petschelt, A.; Eliades, G. The effect of different light-curing units on fatique behavior and degree of conversion of resin composite. Dent. Mater. 2005, 21, 608–615. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Unit | Definition |
---|---|---|
SBS | MPa | shear bond strength |
CS | MPa | compressive strength |
E | GPa | flexibility module/elastic modulus |
HV | - | hardness |
µTBS | MPa | microtensile bond strength |
DC | - | degree of conversion |
UTS | MPa | ultimate tensile strength |
Cement | BS [MPa] | |
---|---|---|
6 ± 2 °C | 19 ± 2 °C | |
BIS-Cem | 5.02 ± 1.78 | 1.21 ± 1.79 |
Clearfil SA | 1.50 ± 0.54 | 0.49 ± 0.98 |
G-Cem capsule | 6.33 ± 1.33 | 3.80 ± 1.40 |
Cement | Temperature | E [GPa] | CS [MPa] |
---|---|---|---|
Enamel Plus Hri | 50 °C | 7.9 ± 1.48 | 340 |
RelyX U200 | room temperature | 5.9 ± 0.35 | 327 |
Author | Cement (Manufacturer) | Other Condition | Type of Mechanical Property | Temperature | Result |
---|---|---|---|---|---|
Ozer F et al. [14] | BIS-Cem (Bisco) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 5.02 ± 1.78/1.25 ± 1.79 |
Ozer F et al. [14] | Clearfil SA (CSA) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 1.50 ± 0.54/0.49 ± 0.98 |
Ozer F et al. [14] | G-Cem capsule (GC) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 6.33 ± 1.33/3.80 ± 1.40 |
Skapska A et al. [20] | Enamel Plus Hri (Micerium) | Data Not Available | Flexibility modul (GPa) | 50 °C | 7.9 ± 1.48 |
Skapska A et al. [20] | RelyX U200 (3M) | Data Not Available | Flexibility modul (GPa) | 50 °C | 5.9 ± 0.35 |
Morais A et al. [28] | Variolink II (Ivoclar Vivadent) | Dual-polymerized | μTBS (MPa) | 25 °C/50 °C | 33.38/47.12 |
Morais A et al. [28] | Variolink II (Ivoclar Vivadent) | Self-polymerized | μTBS (MPa) | 25 °C/50 °C | 17.34/21.65 |
Morais A et al. [28] | Calibra (Densply Sirona) | Dual-polymerized | μTBS (MPa) | 25 °C/50 °C | 37.45/36.17 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a glass slide | Degree of conversion | 25 °C/50 °C | 68.2/76.4 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a pre-cured 2-mm thick resin composite disc | Degree of conversion | 25 °C/50 °C | 63.0/71.1 |
Franca F et al. [42] | RelyX ARC (3M) | They were allowed to self-cured | Degree of conversion | 25 °C/50 °C | 44.5/61.8 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a glass slide | Degree of conversion | 25 °C/50 °C | 63.5/68.8 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a pre-cured 2-mm thick resin composite disc | Degree of conversion | 25 °C/50 °C | 56.3/67.0 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | They were allowed to self-cured | Degree of conversion | 25 °C/50 °C | 45.3/60.4 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a glass slide | Ultimate tensile strength (MPa) | 25 °C/50 °C | 77.3/68.5 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a pre-cured 2-mm thick resin composite disc | Ultimate tensile strength (MPa) | 25 °C/50 °C | 72.4/75.4 |
Franca F et al. [42] | RelyX ARC (3M) | They were allowed to self-cured | Ultimate tensile strength (MPa) | 25 °C/50 °C | 35.7/45.7 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a glass slide | Ultimate tensile strength (MPa) | 25 °C/50 °C | 75.5/62.4 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a pre-cured 2-mm thick resin composite disc | Ultimate tensile strength (MPa) | 25 °C/50 °C | 72.6/78.7 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | They were allowed to self-cured | Ultimate tensile strength (MPa) | 25 °C/50 °C | 16.8/35.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giełzak, J.; Dejak, B.; Sokołowski, J.; Bociong, K. Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings 2023, 13, 244. https://doi.org/10.3390/coatings13020244
Giełzak J, Dejak B, Sokołowski J, Bociong K. Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings. 2023; 13(2):244. https://doi.org/10.3390/coatings13020244
Chicago/Turabian StyleGiełzak, Joanna, Beata Dejak, Jerzy Sokołowski, and Kinga Bociong. 2023. "Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature" Coatings 13, no. 2: 244. https://doi.org/10.3390/coatings13020244
APA StyleGiełzak, J., Dejak, B., Sokołowski, J., & Bociong, K. (2023). Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings, 13(2), 244. https://doi.org/10.3390/coatings13020244