Effects of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of Al0.3Cu0.5CoCrFeNi High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Analysis
2.3. Electrochemical Tests
2.4. Antibacterial Tests
3. Results and Discussion
3.1. XRD and Hardness
3.2. Electrochemical Results
3.3. Antibacterial Properties
3.4. XPS and SEM Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta. Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Tian, L.; Feng, Z.; Xiong, W. Microstructure, microhardness, and wear resistance of AlCoCrFeNiTi/Ni60 coating by plasma spraying. Coatings 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Zhang, H.; Zhang, L.; Zhu, Z.; Fu, H.; Li, H.; Wang, A.; Li, Z.; Zhang, H. A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications. Mater. Sci. Eng. 2022, 831, 142290. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, D.; Wang, K.; Yu, T. Corrosion of Laser Cladding High-Entropy Alloy Coatings: A Review. Coatings 2022, 12, 1669. [Google Scholar] [CrossRef]
- Li, Z.; Qiao, D.; Xu, Y.; Zhou, E.; Yang, C.; Yuan, X.; Lu, Y.; Gu, J.D.; Wolfgang, S.; Xu, D.; et al. Cu-bearing high-entropy alloys with excellent antiviral properties. J. Mater. Sci. Technol. 2021, 84, 59. [Google Scholar] [CrossRef]
- Lou, Y.; Dai, C.; Chang, W.; Qian, H.; Huang, L.; Du, C.; Zhang, D. Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa. Corros. Sci. 2020, 165, 108390. [Google Scholar] [CrossRef]
- Yang, L.; Du, W.; Wu, M.; He, J.; Yu, G.; Wang, S.; Song, Z. Study of the Passivation Film on S32750 Super-Duplex Stainless Steel Exposed in a Simulated Marine Atmosphere. Coatings 2022, 12, 1430. [Google Scholar] [CrossRef]
- Zhou, E.; Qiao, D.; Yang, Y.; Xu, D.; Lu, Y.; Wang, J.; Smith, J.A.; Li, H.; Zhao, H.; Liaw, P.K.; et al. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. J. Mater. Sci. Technol. 2020, 46, 201–210. [Google Scholar] [CrossRef]
- Ren, G.; Huang, L.; Hu, K.; Li, T.; Lu, Y.; Qiao, D.; Zhang, H.; Xu, D.; Wang, T.; Li, T.; et al. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. J. Mater. Sci. Technol. 2022, 117, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Jin, Y.; Fan, Y.; Xu, D.; Meng, L.; Wang, C.; Yu, Y.; Zhang, D.; Wang, F. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying. J. Mater. Sci. Technol. 2022, 102, 159–165. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Zhang, X.; Song, Y.; Li, Z.; Xing, X.; Kong, D. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution. J. Alloy. Compd. 2019, 775, 565–570. [Google Scholar] [CrossRef]
- Chen, X.; Qian, H.; Lou, Y.; Yang, B.; Cui, T.; Zhang, D. Effects of Cu-content and passivation treatment on the corrosion resistance of Al0.3CuxCoCrFeNi high-entropy alloys. J. Alloy. Compd. 2022, 920, 165956. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Chiang, W.C.; Wu, J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117. [Google Scholar] [CrossRef]
- Ren, B.; Liu, Z.X.; Li, D.M.; Shi, L.; Cai, B.; Wang, M.X. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution. Mater. Corros. 2012, 63, 828–834. [Google Scholar] [CrossRef]
- Huang, H.; Niu, J.; Xing, X.; Lin, Q.; Chen, H.; Qiao, Y. Effects of the Shot Peening Process on Corrosion Resistance of Aluminum Alloy: A Review. Coatings 2022, 12, 629. [Google Scholar] [CrossRef]
- Liu, G.; Lu, J.; Lu, K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Eng. 2000, 286, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Tsai, M.H.; Sha, G.; Liu, F.; Horita, Z.; Zhu, Y.; Wang, J.T. Atomic-scale homogenization in an fcc-based high-entropy alloy via severe plastic deformation. J. Alloy. Compd. 2016, 686, 15–23. [Google Scholar] [CrossRef]
- Perumal, G.; Grewal, H.S.; Pole, M.; Reddy, L.V.K.; Mukherjee, S.; Singh, H.; Manivasagam, G.; Arora, H.S. Enhanced biocorrosion resistance and cellular response of a dual-phase high entropy alloy through reduced elemental heterogeneity. ACS Appl. Bio Mater. 2022, 3, 1233–1244. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
- Jüttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Ge, H.H.; Zhou, G.D.; Wu, W.Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Appl. Surf. Sci. 2003, 211, 321–334. [Google Scholar] [CrossRef]
- Jin, Z.; Ge, H.H.; Lin, W.W.; Zong, Y.W.; Liu, S.J.; Shi, J.M. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution. Appl. Surf. Sci. 2014, 322, 47–56. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Huang, L.; Chang, W.; Zhang, D.; Huang, Y.; Li, Z.; Lou, Y.; Qian, H.; Jiang, C.; Li, X.; Mol, A. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm. Corros. Sci. 2022, 199, 110159. [Google Scholar] [CrossRef]
- Shi, Y.; Collins, L.; Balke, N.; Liaw, P.K.; Yang, B. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Appl. Surf. Sci. 2018, 439, 533–544. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhu, Y.; Bai, Y.; Yang, B. Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Appl. Surf. Sci. 2019, 481, 1305–1312. [Google Scholar] [CrossRef]
- Khireche, S.; Boughrara, D.; Kadri, A.; Hamadou, L.; Benbrahim, N. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution. Corros. Sci. 2014, 87, 504–516. [Google Scholar] [CrossRef]
HEA Specimens | Ecorr (mVSCE) | Icorr (nA/cm2) | Ipass (nA/cm2) | Ep (mVSCE) |
---|---|---|---|---|
As-cast | −251.8 (±7.2) | 740.6 (±50.4) | - | - |
USSP | −249.4 (±9.7) | 143.2 (±6.2) | 270.2 (±12.3) | −85.5 (±5.8) |
HEA Specimens | RS (Ω·cm2) | R1 (Ω·cm2) | R2 (Ω·cm2) | CPE1 Parameters | CPE2 Parameters | ||
---|---|---|---|---|---|---|---|
Y1 (μF/cm2) | n1 | Y2 (μF/cm2) | n2 | ||||
As-cast | 3.46 | 8.74 × 105 | 1.14 × 104 | 540 | 0.81 | 56.9 | 0.95 |
USSP | 3.34 | 8.13 × 106 | 2.07 × 106 | 174.9 | 0.78 | 24.7 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cui, T.; He, S.; Chang, W.; Shi, Y.; Lou, Y. Effects of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of Al0.3Cu0.5CoCrFeNi High-Entropy Alloys. Coatings 2023, 13, 246. https://doi.org/10.3390/coatings13020246
Chen X, Cui T, He S, Chang W, Shi Y, Lou Y. Effects of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of Al0.3Cu0.5CoCrFeNi High-Entropy Alloys. Coatings. 2023; 13(2):246. https://doi.org/10.3390/coatings13020246
Chicago/Turabian StyleChen, Xudong, Tianyu Cui, Shengyu He, Weiwei Chang, Yunzhu Shi, and Yuntian Lou. 2023. "Effects of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of Al0.3Cu0.5CoCrFeNi High-Entropy Alloys" Coatings 13, no. 2: 246. https://doi.org/10.3390/coatings13020246
APA StyleChen, X., Cui, T., He, S., Chang, W., Shi, Y., & Lou, Y. (2023). Effects of Ultrasonic Shot Peening on the Corrosion Resistance and Antibacterial Properties of Al0.3Cu0.5CoCrFeNi High-Entropy Alloys. Coatings, 13(2), 246. https://doi.org/10.3390/coatings13020246