Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Density
3.2. Dynamic Modulus of Elasticity
3.3. Flexural Strength
3.4. Compressive Strength
4. Discussions
5. Conclusions
- A new type of MWCNT was developed which has a similar structure to the SWCNTs in the sense that it is capped at both ends. The aspect ratio is smaller compared to “traditional” MWCNTs which results in a better bridging effect of the nano-cracks and a denser material structure compared to the reference mix. However, “traditional” MWCNTs are better in that aspect due to their increased lengths.
- The new type of MWCNT achieved a uniform dispersion within the mortar mix, proven by consistently lower values of standard deviations and coefficients of variation for each of the investigated parameters. The data are even more encouraging and suggest that further research should be conducted in this direction taking into account that they are produced using the same technology applied for MWCNTs but the use of surfactants and, consequently, of anti-foaming agents is no longer necessary. Moreover, the ultra-sonication procedure required to ensure the distribution of nano-tubes within the aqueous solution, which should be carefully applied in case of long MWCNTs, is also not necessary.
- The data are however limited to a rather small number of specimens and should be completed by large-scale laboratory investigations where significantly larger datasets should be collected before more generally valid conclusions could be drawn.
- The improvement of mechanical properties of mortar using the new type of MWCNT is small, 18.76% in the case of flexural strength and only 4.64% in the case of compressive strength. However, these improvements were achieved with a very small percentage of CNTs in the mix, 0.025% by mass of cement. Additional percentages should be considered, and observations should be made as to whether or not the highlighted trends at this stage of the research are confirmed. Last but not least, durability studies should be conducted in order to assess the behavior of the mortar mixes to different types of chemical attacks and weathering conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irshidat, M.R.; Al-Saleh, M.H. Thermal performance and fire resistance of nanoclay modified cementitious materials. Constr. Build. Mater. 2018, 159, 213–219. [Google Scholar] [CrossRef]
- Moro, C.; Francioso, V.; Velay-Lizancos, M. Nano-TiO2 effects on high temperature resistance of recycled mortars. J. Clean. Prod. 2020, 263, 121581. [Google Scholar] [CrossRef]
- Nuaklong, P.; Boonchoo, N.; Jongvivatsakul, P.; Charinpanitkul, T.; Sukontasukkul, P. Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar. Constr. Build. Mater. 2021, 275, 122189. [Google Scholar] [CrossRef]
- Zhan, P.; He, Z.; Ma, Z.; Liang, C.; Zhang, X.; Abreham, A.A.; Shi, J. Utilization of nano-metakaolin in concrete: A review. J. Build. Eng. 2020, 30, 101259. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, X.; Liu, B.; Shi, J.; Gencel, O.; Ozbakkaloglu, T. Mechanical property and durability of engineered cementitious composites (ECC) with nano-material and superabsorbent polymers. Powder Technol. 2022, 409, 117839. [Google Scholar] [CrossRef]
- Song, H.; Li, X. An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites. Materials 2021, 14, 2950. [Google Scholar] [CrossRef]
- Gdoutos, E.E.; Konsta-Gdoutos, M.S.; Danoglidis, P.A. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cem. Concr. Compos. 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Song, C.; Hong, G.; Choi, S. Effect of dispersibility of carbon nanotubes by silica fume on material properties of cement mortars: Hydration, pore structure, mechanical properties, self-desiccation, and autogenous shrinkage. Constr. Build. Mater. 2020, 265, 120318. [Google Scholar] [CrossRef]
- da Silva Andrade Neto, J.; Santos, T.A.; de Andrade Pinto, S.; Dias, C.M.R.; Ribeiro, D.V. Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices. Constr. Build. Mater. 2021, 271, 121903. [Google Scholar] [CrossRef]
- Lee, H.S.; Balasubramanian, B.; Gopalakrishna, G.V.T.; Kwon, S.-J.; Karthick, S.P.; Saraswathy, V. Durability performance of CNT and nanosilica admixed cement mortar. Constr. Build. Mater. 2018, 159, 463–472. [Google Scholar] [CrossRef]
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Jarolim, T.; Labaj, M.; Hela, R.; Michnova, K. Carbon nanotubes in cementitious composites: Dispersion, implementation, and influence on mechanical characteristics. Adv. Mater. Sci. Eng. 2016, 2016, 7508904. [Google Scholar] [CrossRef] [Green Version]
- Madni, I.; Hwang, C.-Y.; Park, S.-D.; Choa, Y.-H.; Kim, H.-T. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2010, 358, 101–107. [Google Scholar] [CrossRef]
- Torabian Isfahani, F.; Li, W.; Redaelli, E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites. Cem. Concr. Compos. 2016, 74, 154–163. [Google Scholar] [CrossRef]
- Chaipanich, A.; Nochaiya, T.; Wongkeo, W.; Torkittikul, P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater. Sci. Eng. A 2010, 527, 1063–1067. [Google Scholar] [CrossRef]
- Coppola, L.; Cadoni, E.; Forni, D.; Buoso, A. Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (GRP) at high strain rates. Appl. Mech. Mater. 2011, 82, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Alafogianni, P.; Dassios, K.; Tsakiroglou, C.D.; Matikas, T.E.; Barkoula, N.M. Effect of CNT addition and dispersive agents on the transport properties and microstructure of cement mortars. Constr. Build. Mater. 2019, 197, 251–261. [Google Scholar] [CrossRef]
- Tragazikis, I.K.; Dassios, K.G.; Exarchos, D.A.; Dalla, P.T.; Matikas, T.E. Acoustic emission investigation of the mechanical performance of carbon nanotube-modified cement-based mortars. Constr. Build. Mater. 2016, 122, 518–524. [Google Scholar] [CrossRef]
- Abedi, M.; Fangueiro, R.; Correia, A.G. An effective method for hybrid CNT/GNP dispersion and its effects on the mechanical, microstructural, thermal, and electrical properties of multifunctional cementitious composites. J. Nanomater. 2020, 2020, 6749150. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites. Powder Technol. 2017, 307, 1–9. [Google Scholar] [CrossRef]
- SR EN 197-1; Cement. Part I: Composition, Specifications and Conformity Criteria for Normal Use Cements. ASRO (Romanian Standards Association): București, Romania, 2011.
- Inoue, Y.; Kakihata, K.; Hirono, Y.; Horie, T.; Ishida, A.; Mimura, H. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl. Phys. Lett. 2008, 92, 213113. [Google Scholar] [CrossRef] [Green Version]
- Alexa-Stratulat, S.-M.; Covatariu, D.; Toma, A.-M.; Rotaru, A.; Covatariu, G.; Toma, I.-O. Influence of a novel carbon-based nano-material on the thermal conductivity of mortar. Sustainability 2022, 14, 8189. [Google Scholar] [CrossRef]
- Shao, H.; Chen, B.; Li, B.; Tang, S.; Li, Z. Influence of dispersants on the properties of CNTs reinforced cement-based materials. Constr. Build. Mater. 2017, 131, 186–194. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Alansari, M.; Taha, R.; Senouci, A.; Abutaqa, A. Impact of CNTs’ treatment, length and weight fraction on ordinary concrete mechanical properties. Constr. Build. Mater. 2020, 264, 120698. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Liu, S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr. Build. Mater. 2013, 46, 8–12. [Google Scholar] [CrossRef]
- ASTM C215-14; Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2014.
- SR EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. ASRO (Romanian Standards Association): București, Romania, 2016.
- Jamnam, S.; Sua-iam, G.; Maho, B.; Pianfuengfoo, S.; Sappakittipakorn, M.; Zhang, H.; Limkatanyu, S.; Sukontasukkul, P. Use of cement mortar incorporating superabsorbent polymer as a passive fire-protective layer. Polymers 2022, 14, 5266. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Wang, J.; Zhang, P.; Guo, J. Modification effects of carbon nanotube dispersion on the mechanical properties, pore structure, and microstructure of cement mortar. Materials 2020, 13, 1101. [Google Scholar] [CrossRef] [Green Version]
- Alexa-Stratulat, S.M.; Covatariu, D.; Toma, I.O.; Covatariu, G. Computation and experimental considerations on dynamic testing of cement mortar. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1141, 012019. [Google Scholar] [CrossRef]
- Hawreen, A.; Bogas, J.A.; Dias, A.P.S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 2018, 168, 459–470. [Google Scholar] [CrossRef]
- Guo, J.; Yan, Y.; Wang, J.; Xu, Y. Strength analysis of cement mortar with carbon nanotube dispersion based on fractal dimension of pore structure. Fractal Fract. 2022, 6, 609. [Google Scholar] [CrossRef]
- Chen, J.; Akono, A.-T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem. Concr. Res. 2020, 137, 106197. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Xu, S. Progress in research on carbon nanotubes reinforced cementitious composites. Adv. Mater. Sci. Eng. 2015, 2015, 307435. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, M.O.; Taha, R.; Abu Taqa, A.; Al-Nuaimi, N.; Al-Rub, R.A.; Bani-Hani, K.A. Effect of nanotube geometry on the strength and dispersion of CNT-cement composites. J. Nanomater. 2017, 2017, 6927416. [Google Scholar] [CrossRef] [Green Version]
Spectrum | C | O | Na | Mg | Al | Si | S | K | Ca | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 1 | 7.98 | 59.33 | - | - | 21.88 | 10.57 | - | - | 0.24 | - | - |
Spectrum 2 | 18.13 | 66.85 | - | 0.31 | 0.98 | 3.94 | 0.35 | 0.07 | 9.20 | - | 0.16 |
Spectrum 3 | 15.37 | 66.95 | - | 0.67 | 1.59 | 4.97 | 0.28 | 0.08 | 9.57 | 0.07 | 0.45 |
Spectrum 4 | - | 76.73 | 0.29 | 0.54 | 1.66 | 7.23 | 0.45 | 0.12 | 12.61 | - | 0.35 |
Mix Designation | Cement (g) | Sand (g) | Water/Cement | SDS (mMol) | Tributyl Phosphate/Cement (%) | CNT/Cement (%) | CBN/Cement (%) |
---|---|---|---|---|---|---|---|
Ref | 500 | 2050 | 0.6 | - | - | - | - |
CNT * | 1 | - | 0.025 | - | |||
CNT2 ** | 1 | 0.13 | 0.025 | - | |||
CBN | - | - | - | 0.025 |
Mix | Density | Dynamic Modulus of Elasticity | Compressive Strength | Flexural Strength |
---|---|---|---|---|
[kg/m3] | [GPa] | [MPa] | [MPa] | |
Ref | 2183 ± 20.76 COV = 0.95 | 33.7 ± 0.35 COV = 1.04 | 35.75 ± 2.74 COV = 7.66 | 5.16 ± 0.39 COV = 7.51 |
CNT | 1741 ± 85.62 COV = 4.92 | 15.1 ± 1.03 COV = 6.82 | 9.71 ± 1.64 COV = 16.84 | 2.38 ± 0.31 COV = 12.95 |
CNT2 | 2065 ± 24.17 COV = 1.17 | 26.5 ± 0.44 COV = 1.67 | 28.11 ± 2.62 COV = 9.34 | 7.64 ± 0.44 COV = 5.70 |
CBN | 2203 ± 17.55 COV = 0.8 | 34.3 ± 0.65 COV = 1.89 | 37.41 ± 1.69 COV = 4.51 | 6.13 ± 0.38 COV = 6.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexa-Stratulat, S.-M.; Stoian, G.; Ghemeş, I.-A.; Toma, A.-M.; Covatariu, D.; Toma, I.-O. Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar. Coatings 2023, 13, 492. https://doi.org/10.3390/coatings13030492
Alexa-Stratulat S-M, Stoian G, Ghemeş I-A, Toma A-M, Covatariu D, Toma I-O. Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar. Coatings. 2023; 13(3):492. https://doi.org/10.3390/coatings13030492
Chicago/Turabian StyleAlexa-Stratulat, Sergiu-Mihai, George Stoian, Iulian-Adrian Ghemeş, Ana-Maria Toma, Daniel Covatariu, and Ionut-Ovidiu Toma. 2023. "Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar" Coatings 13, no. 3: 492. https://doi.org/10.3390/coatings13030492
APA StyleAlexa-Stratulat, S. -M., Stoian, G., Ghemeş, I. -A., Toma, A. -M., Covatariu, D., & Toma, I. -O. (2023). Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar. Coatings, 13(3), 492. https://doi.org/10.3390/coatings13030492