An Overview of Technological Parameter Optimization in the Case of Laser Cladding
Abstract
:1. Introduction
2. Traditional Optimization Methods
2.1. Single-Factor Experiment
2.2. Regression Analysis
2.3. Response Surface Methodology
2.4. Taguchi Method
2.5. Other Traditional Optimization Methods
3. Intelligent Optimization Methods
3.1. Artificial Neural Network Model
3.2. Genetic Algorithm Optimizes BP Neural Network (GABP)
3.3. Support Vector Machines (SVM)
3.4. Novel Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
3.5. Particle Swarm Optimization Algorithm (PSO)
3.6. Other Intelligent Optimization Methods
4. Summary and Outlook
4.1. A Deeper Look at Intelligent Algorithms
4.2. Optimization of Process Parameters under External Auxiliary Conditions
4.3. Optimization Studies Carried out on More Parameters, and More Evaluation Indicators Introduced
4.4. Development of Software That Allows the Optimization of Laser Cladding Process Parameters
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Du, D.; Liu, G.; Chang, B.; Hong, Y. Microstructure and properties of WC reinforced Ni-based composite coatings with Y2O3 addition on titanium alloy by laser cladding. Sci. Technol. Weld. Join. 2019, 24, 517–524. [Google Scholar] [CrossRef]
- Ke, J.; Liu, X.-B.; Liang, J.; Liang, L.; Luo, Y.-S. Microstructure and fretting wear of laser cladding self-lubricating anti-wear composite coatings on TA2 alloy after aging treatment. Opt. Laser Technol. 2019, 119, 105599. [Google Scholar] [CrossRef]
- Chakraborty, S.S.; Dutta, S. Estimation of dilution in laser cladding based on energy balance approach using regression analysis. Sādhanā 2019, 44, 150. [Google Scholar] [CrossRef] [Green Version]
- Nenadl, O.; Ocelík, V.; Palavra, A.; De Hosson, J.T. The Prediction of Coating Geometry from Main Processing Parameters in Laser Cladding. Phys. Procedia 2014, 56, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Du, D.; Liu, G.; Chang, B.; Ju, J.; Sun, S.; Fu, H. Microstructure and property of laser clad Fe-based composite layer containing Nb and B4C powders. J. Alloy. Compd. 2019, 802, 373–384. [Google Scholar] [CrossRef]
- Li, F.; Gao, Z.; Li, L.; Chen, Y. Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Opt. Laser Technol. 2016, 77, 134–143. [Google Scholar] [CrossRef]
- Wang, K.; Du, D.; Liu, G.; Pu, Z.; Chang, B.; Ju, J. A study on the additive manufacturing of a high chromium Nickel-based superalloy by extreme high-speed laser metal deposition. Opt. Laser Technol. 2020, 133, 106504. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Mullick, S.; Gopinath, M. A lumped parametric analytical model for predicting molten pool temperature and clad geometry in pre-placed powder laser cladding. Optik 2021, 247, 168015. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Syed, W.U.H.; Pinkerton, A.J.; Li, L. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping. Appl. Surf. Sci. 2005, 247, 268–276. [Google Scholar] [CrossRef]
- Dass, A.; Moridi, A. State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings 2019, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, U.; Ocelík, V.; De Hosson, J. Analysis of coaxial laser cladding processing conditions. Surf. Coat. Technol. 2005, 197, 127–136. [Google Scholar] [CrossRef]
- Hao, M.; Sun, Y. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach. Int. J. Heat Mass Transf. 2013, 64, 352–360. [Google Scholar] [CrossRef]
- OuYang, C.-S.; Liu, X.-B.; Luo, Y.-S.; Liang, J.; Wang, M.; Chen, D.-Q. Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on 304 stainless steel. J. Mater. Res. Technol. 2020, 9, 7034–7046. [Google Scholar] [CrossRef]
- Xixi, L.; Kaikai, Z.; Jing, C.; Guanghui, M.; Fangli, Y.; Yingying, Z.; Hongwei, Z.; Peiqing, L.; Hui, X. Effect of line energy density of the laser beam on the microstructure and wear resistance properties of the obtained Fe3Al laser cladding coatings. Optik 2022, 261, 169256. [Google Scholar]
- Ibrahim, M.Z.; Sarhan, A.A.; Yusuf, F.; Hamdi, M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants—A review article. J. Alloy. Compd. 2017, 714, 636–667. [Google Scholar] [CrossRef]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Xu, P.; Zhang, B. In-situ NbC reinforced Fe-based coating by laser cladding: Simulation and experiment. Surf. Coat. Technol. 2021, 412, 127027. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Jie, Z.; Sun, F.; Huang, D. Research on the microstructure and wear resistance of titanium alloy structural members repaired by laser cladding. Opt. Lasers Eng. 2008, 46, 810–816. [Google Scholar] [CrossRef]
- Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A. Laser cladding of aerospace materials. J. Mater. Process. Technol. 2002, 122, 63–68. [Google Scholar] [CrossRef]
- Zeng, C.; Tian, W.; Liao, W.H.; Hua, L. Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf. Coat. Technol. 2016, 294, 122–130. [Google Scholar] [CrossRef]
- Jin, G.; Cai, Z.; Guan, Y.; Cui, X.; Liu, Z.; Li, Y.; Dong, M.; Zhang, D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 2018, 445, 113–122. [Google Scholar] [CrossRef]
- Liu, X.-B.; Meng, X.-J.; Liu, H.-Q.; Shi, G.-L.; Wu, S.-H.; Sun, C.-F.; Wang, M.-D.; Qi, L.-H. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy. Mater. Des. 2014, 55, 404–409. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Vilar, R.; Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater. Des. 2012, 41, 338–343. [Google Scholar] [CrossRef]
- Abioye, T.; McCartney, D.; Clare, A. Laser cladding of Inconel 625 wire for corrosion protection. J. Mater. Process. Technol. 2015, 217, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, X.-B.; Zhu, G.-X.; Zhu, Y.; Liu, Y.-F.; Zhang, L.; Wang, J.-L. Tribological study of Ti3SiC2/Cu5Si/TiC reinforced Co-based coatings on SUS304 steel by laser cladding. Surf. Coat. Technol. 2022, 432, 128064. [Google Scholar] [CrossRef]
- El Cheikh, H.; Courant, B.; Branchu, S.; Hascoët, J.-Y.; Guillén, R. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt. Lasers Eng. 2012, 50, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Hamedi, M.; Torkamany, M.; Sabbaghzadeh, J. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment. Opt. Lasers Eng. 2010, 49, 557–563. [Google Scholar] [CrossRef]
- Ferreira, A.; Darabi, R.; Sousa, J.; Cruz, J.; Reis, A.; Vieira, M. Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steel. Metals 2021, 11, 672. [Google Scholar] [CrossRef]
- Shan, B.; Chen, J.; Chen, S.; Ma, M.; Ni, L.; Shang, F.; Zhou, L. Laser cladding of Fe-based corrosion and wear-resistant alloy: Genetic design, microstructure, and properties. Surf. Coat. Technol. 2022, 433, 128117. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, G.; He, X.; Li, S. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 2017, 104, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Janicki, D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt. Laser Technol. 2017, 94, 6–14. [Google Scholar] [CrossRef]
- Fu, F.; Zhang, Y.; Chang, G.; Dai, J. Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 2016, 127, 200–202. [Google Scholar] [CrossRef]
- Balu, P.; Leggett, P.; Hamid, S.; Kovacevic, R. Multi-Response Optimization of Laser-based Powder Deposition of Multi-track Single Layer Hastelloy C-276. Mater. Manuf. Process. 2013, 28, 173–182. [Google Scholar] [CrossRef]
- Pant, P.; Chatterjee, D.; Nandi, T.; Samanta, S.K.; Lohar, A.K.; Changdar, A. Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 283. [Google Scholar] [CrossRef]
- Devojno, O.G.; Feldshtein, E.; Kardapolava, M.A.; Lutsko, N.I. On the formation features, structure, microhardness and tribological behavior of single tracks and coating layers formed by laser cladding of Al-Fe powder bronze. Surf. Coat. Technol. 2019, 358, 195–206. [Google Scholar] [CrossRef]
- Moeinfar, K.; Khodabakhshi, F.; Kashani-Bozorg, S.; Mohammadi, M.; Gerlich, A. A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys. J. Mater. Res. Technol. 2022, 16, 1029–1068. [Google Scholar] [CrossRef]
- Zhu, L.; Xue, P.; Lan, Q.; Meng, G.; Ren, Y.; Yang, Z.; Xu, P.; Liu, Z. Recent research and development status of laser cladding: A review. Opt. Laser Technol. 2021, 138, 106915. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, F.; Gao, J.; Liu, F.; Huang, C.; Zheng, H.; Wang, P.; Qiu, H. Effect of different heat input on the microstructure and mechanical properties of laser cladding repaired 300M steel. J. Mater. Res. Technol. 2023, 22, 556–568. [Google Scholar] [CrossRef]
- Ebrahimnia, M.; Xie, Y.; Chi, C. Effect of cladding parameters on microstructure and defects in direct laser metal deposition of 24CrNiMo steel. J. Laser Appl. 2021, 33, 012007. [Google Scholar] [CrossRef]
- Muvvala, G.; Karmakar, D.P.; Nath, A.K. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy. Opt. Lasers Eng. 2017, 88, 139–152. [Google Scholar] [CrossRef]
- Urbanic, R.J.; Saqib, S.M.; Aggarwal, K. Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships. J. Manuf. Sci. Eng. 2016, 138, 051012. [Google Scholar] [CrossRef]
- Goodarzi, D.M.; Pekkarinen, J.; Salminen, A. Analysis of laser cladding process parameter influence on the clad bead geometry. Weld. World 2017, 61, 883–891. [Google Scholar] [CrossRef]
- Bax, B.; Rajput, R.; Kellet, R.; Reisacher, M. Systematic evaluation of process parameter maps for laser cladding and directed energy deposition. Addit. Manuf. 2018, 21, 487–494. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2020, 134, 106619. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; Miao, X.; Gong, Y.; Zhao, Z. The effect of laser energy density on the geometric characteristics, microstructure and corrosion resistance of Co-based coatings by laser cladding. J. Mater. Res. Technol. 2021, 15, 2405–2418. [Google Scholar] [CrossRef]
- Yao, K.; Zongde, L.; Quanbing, L. Effect of Laser Power on Microstructure and Properties of Ni-based Alloy Coatings on 30CrMnSiA Steel. J. Therm. Spray Technol. 2022, 31, 2136–2146. [Google Scholar] [CrossRef]
- Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S.M. An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 2015, 8, 12–35. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Guo, K.; Li, J. Investigation on the effect of laser remelting for laser cladding nickel based alloy. J. Laser Appl. 2019, 31, 022512. [Google Scholar] [CrossRef]
- Pinkerton, A.J. Advances in the modeling of laser direct metal deposition. J. Laser Appl. 2015, 27, S15001. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiyari, A.N.; Wang, Z.; Wang, L.; Zheng, H. A review on applications of artificial intelligence in modeling and optimization of laser beam machining. Opt. Laser Technol. 2020, 135, 106721. [Google Scholar] [CrossRef]
- Gao, J.; Wang, C.; Hao, Y.; Liang, X.; Zhao, K. Prediction of TC11 single-track geometry in laser metal deposition based on back propagation neural network and random forest. J. Mech. Sci. Technol. 2022, 36, 1417–1425. [Google Scholar] [CrossRef]
- Yu, D.; Wang, C.; Cheng, X.; Zhang, F. Optimization of hybrid PVD process of TiAlN coatings by Taguchi method. Appl. Surf. Sci. 2008, 255, 1865–1869. [Google Scholar] [CrossRef]
- Mahamood, R.; Akinlabi, E.; Shukla, M.; Pityana, S. Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Mater. Des. 2013, 50, 656–666. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Cheng, X.; Wang, H. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate. Surf. Coat. Technol. 2017, 325, 352–359. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J.; Zhao, Z. Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy. J. Alloy. Compd. 2016, 692, 989–996. [Google Scholar] [CrossRef]
- Yi, P.; Zhan, X.; He, Q.; Liu, Y.; Xu, P.; Xiao, P.; Jia, D. Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding. Opt. Laser Technol. 2018, 109, 480–487. [Google Scholar] [CrossRef]
- Gu, J.; Ju, J.; Wang, R.; Li, J.; Yu, H.; Wang, K. Effects of Laser Scanning Rate and Ti Content on Wear of Novel Fe-Cr-B-Al-Ti Coating Prepared via Laser Cladding. J. Therm. Spray Technol. 2022, 31, 2609–2620. [Google Scholar] [CrossRef]
- Srisungsitthisunti, P.; Kaewprachum, B.; Yang, Z.; Gao, G. Real-Time Quality Monitoring of Laser Cladding Process on Rail Steel by an Infrared Camera. Metals 2022, 12, 825. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; Zhang, Y.; Lian, G.; Cao, Q.; Yang, J. Influence of laser power on the microstructure and properties of in-situ NbC/WCoB–TiC coating by laser cladding. Mater. Chem. Phys. 2022, 290, 126636. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Zhu, Y.Y.; Li, Z.G.; Wu, Y.X. Effect of laser scanning speed on TiN/TiB–Ti based composite. Surf. Eng. 2013, 29, 346–350. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, J.; Wang, C.; Gong, Z.; Pang, X.; Xiong, S. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology. Opt. Lasers Eng. 2018, 110, 163–171. [Google Scholar] [CrossRef]
- Bartkowski, D.; Kinal, G. Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb:YAG disk laser. Int. J. Refract. Met. Hard Mater. 2016, 58, 157–164. [Google Scholar] [CrossRef]
- Chao, Q.; Guo, T.; Jarvis, T.; Wu, X.; Hodgson, P.; Fabijanic, D. Direct laser deposition cladding of Al CoCrFeNi high entropy alloys on a high-temperature stainless steel. Surf. Coat. Technol. 2017, 332, 440–451. [Google Scholar] [CrossRef]
- Chryssolouris, G.; Zannis, S.; Tsirbas, K.; Lalas, C. An Experimental Investigation of Laser Cladding. CIRP Ann. 2002, 51, 145–148. [Google Scholar] [CrossRef]
- Qu, C.; Li, J.; Bai, L.; Shao, J.; Song, R.; Chen, J. Effects of the thickness of the pre-placed layer on microstructural evolution and mechanical properties of the laser-clad coatings. J. Alloy. Compd. 2015, 644, 450–463. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Davim, J.P.; Oliveira, C.; Cardoso, A. Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA). Mater. Des. 2008, 29, 554–557. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, S. Modeling the geometric formation and powder deposition mass in laser induction hybrid cladding. J. Mech. Sci. Technol. 2012, 26, 2347–2351. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, P.; Fu, G.; Shi, S. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding. Opt. Laser Technol. 2018, 101, 341–348. [Google Scholar] [CrossRef]
- Ansari, M.; Razavi, R.S.; Barekat, M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy. Opt. Laser Technol. 2016, 86, 136–144. [Google Scholar] [CrossRef]
- Shayanfar, P.; Daneshmanesh, H.; Janghorban, K. Parameters Optimization for Laser Cladding of Inconel 625 on ASTM A592 Steel. J. Mater. Res. Technol. 2020, 9, 8258–8265. [Google Scholar] [CrossRef]
- Erfanmanesh, M.; Abdollah-Pour, H.; Mohammadian-Semnani, H.; Shoja-Razavi, R. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel. Opt. Laser Technol. 2017, 97, 180–186. [Google Scholar] [CrossRef]
- Nabhani, M.; Razavi, R.S.; Barekat, M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate. Opt. Laser Technol. 2018, 100, 265–271. [Google Scholar] [CrossRef]
- Javid, Y. Multi-response optimization in laser cladding process of WC powder on Inconel 718. CIRP J. Manuf. Sci. Technol. 2020, 31, 406–417. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, Y.; Zhang, M.; Mao, C.; Wang, K.; Tong, Y.; Zhang, J.; Li, K. Multi-Objective Optimization of Process Parameters in Laser Cladding CoCrCuFeNi High-Entropy Alloy Coating. J. Therm. Spray Technol. 2022, 31, 1985–2000. [Google Scholar] [CrossRef]
- Bose, S.; Nandi, T. Microstructural characterization and measurement of laser responses of lens developed novel titanium matrix composite. Eur. Phys. J. Plus 2021, 136, 978. [Google Scholar] [CrossRef]
- Badkar, D.S.; Pandey, K.S.; Buvanashekaran, G. Application of the central composite design in optimization of laser transformation hardening parameters of commercially pure titanium using Nd:YAG laser. Int. J. Adv. Manuf. Technol. 2011, 59, 169–192. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Opt. Lasers Eng. 2012, 50, 985–995. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P.; Mathe, N.; Pityana, S.; Adeosun, S. Parametric optimization of laser deposited high entropy alloys using response surface methodology (RSM). Int. J. Adv. Manuf. Technol. 2020, 109, 2719–2732. [Google Scholar] [CrossRef]
- Guo, C.; He, S.; Yue, H.; Li, Q.; Hao, G. Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition. Opt. Laser Technol. 2020, 134, 106607. [Google Scholar] [CrossRef]
- Cui, L.-J.; Zhang, M.; Guo, S.-R.; Cao, Y.-L.; Zeng, W.-H.; Li, X.-L.; Zheng, B. Multi-objective numerical simulation of geometrical characteristics of laser cladding of cobalt-based alloy based on response surface methodology. Meas. Control. 2020, 54, 1125–1135. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Qiu, C.; Wang, M.; Li, D.; Dong, Z.; Gui, Y. Multi-Objective Optimization of Process Parameters of 45 Steel Laser Cladding Ni60PTA Alloy Powder. Coatings 2022, 12, 939. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Li, Q.; Shi, B.; Li, X.; Wang, X.; Lu, H.; Zhang, H.-C. Process optimization of laser cladding Ni60A alloy coating in remanufacturing. Opt. Laser Technol. 2019, 120, 105718. [Google Scholar] [CrossRef]
- Khorram, A.; Jamaloei, A.D.; Paidar, M.; Cao, X. Laser cladding of Inconel 718 with 75Cr3C2 + 25(80Ni20Cr) powder: Statistical modeling and optimization. Surf. Coat. Technol. 2019, 378, 124933. [Google Scholar] [CrossRef]
- Lian, G.; Yao, M.; Zhang, Y.; Chen, C. Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding. Int. J. Adv. Manuf. Technol. 2018, 97, 2397–2407. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.; Huang, X.; Wu, Y.; Gong, Y. Process parameter optimization and EBSD analysis of Ni60A-25% WC laser cladding. Int. J. Refract. Met. Hard Mater. 2021, 101, 105675. [Google Scholar] [CrossRef]
- Ben-Arfa, B.A.; Salvado, I.M.M.; Frade, J.R.; Pullar, R.C. Fast route for synthesis of stoichiometric hydroxyapatite by employing the Taguchi method. Mater. Des. 2016, 109, 547–555. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Liu, W.; Ma, Y.; Tang, S.; Liang, C.; Cai, Q.; Zhang, C. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method. Opt. Laser Technol. 2018, 111, 470–480. [Google Scholar] [CrossRef]
- Lin, C.-M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade. Vacuum 2015, 115, 117–123. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Jiang, J.; Li, B. Influence of Powders and Process Parameters on Bonding Shear Strength and Micro Hardness in Laser Cladding Remanufacturing. Procedia CIRP 2015, 29, 804–809. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. Laser Composite Surfacing of Ni-WC Coating on AA5083 for Enhancing Tribomechanical Properties. Tribol. Trans. 2016, 60, 249–259. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Chen, X.; Zhao, Y.; Guan, C. Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt. Laser Technol. 2022, 152, 108129. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Liu, J.; Yuan, Z. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel. Opt. Laser Technol. 2018, 99, 256–270. [Google Scholar] [CrossRef]
- Zhang, Z.; Kovacevic, R. Multiresponse Optimization of Laser Cladding Steel + VC Using Grey Relational Analysis in the Taguchi Method. JOM 2016, 68, 1762–1773. [Google Scholar] [CrossRef]
- Mondal, S.; Paul, C.P.; Kukreja, L.M.; Bandyopadhyay, A.; Pal, P.K. Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface. Int. J. Adv. Manuf. Technol. 2012, 66, 91–96. [Google Scholar] [CrossRef]
- Deng, D.; Li, T.; Huang, Z.; Jiang, H.; Yang, S.; Zhang, Y. Multi-response optimization of laser cladding for TiC particle reinforced Fe matrix composite based on Taguchi method and grey relational analysis. Opt. Laser Technol. 2022, 153, 108259. [Google Scholar] [CrossRef]
- Yu, T.; Yang, L.; Zhao, Y.; Sun, J.; Li, B. Experimental research and multi-response multi-parameter optimization of laser cladding Fe313. Opt. Laser Technol. 2018, 108, 321–332. [Google Scholar] [CrossRef]
- Fan, P.; Zhang, G. Study on process optimization of WC-Co50 cermet composite coating by laser cladding. Int. J. Refract. Met. Hard Mater. 2019, 87, 105133. [Google Scholar] [CrossRef]
- Marzbanrad, J.; Ghaseminejad, P.; Ahmadzadeh, M.H.; Teimouri, R. Experimental investigation and statistical optimization of laser surface cladding parameters. Int. J. Adv. Manuf. Technol. 2014, 76, 1163–1172. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, X.; Chen, C.; Lian, G.; Huang, X. An Integrated Method for Multi-Objective Optimization of Multi-Pass Fe50/TiC Laser Cladding on AISI 1045 Steel based on Grey Relational Analysis and Principal Component Analysis. Coatings 2020, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Yang, Y.; Qi, K.; Jin, K.; Xiong, L. Quality evaluation of multi-path laser cladding coatings based on integrated fuzzy comprehensive evaluation and improved analytical hierarchy process method. Surf. Coat. Technol. 2021, 427, 127816. [Google Scholar] [CrossRef]
- Reddy, L.; Preston, S.; Shipway, P.; Davis, C.; Hussain, T. Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution. Surf. Coat. Technol. 2018, 349, 198–207. [Google Scholar] [CrossRef]
- Meng, G.; Zhu, L.; Zhang, J.; Yang, Z.; Xue, P. Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating. Optik 2021, 240, 166828. [Google Scholar] [CrossRef]
- Menghani, J.; Vyas, A.; More, S.; Paul, C.; Patnaik, A. Parametric investigation and optimization for CO2 laser cladding of AlFeCoCrNiCu powder on AISI 316. High Temp. Mater. Process. 2021, 40, 265–280. [Google Scholar] [CrossRef]
- Mohammed, S.; Zhang, Z.; Kovacevic, R. Optimization of processing parameters in fiber laser cladding. Int. J. Adv. Manuf. Technol. 2020, 111, 2553–2568. [Google Scholar] [CrossRef]
- Liu, S.; Kovacevic, R. Statistical analysis and optimization of processing parameters in high-power direct diode laser cladding. Int. J. Adv. Manuf. Technol. 2014, 74, 867–878. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy. Lasers Manuf. Mater. Process. 2015, 3, 9–21. [Google Scholar] [CrossRef]
- Moradi, M.; Hasani, A.; Pourmand, Z.; Lawrence, J. Direct laser metal deposition additive manufacturing of Inconel 718 superalloy: Statistical modelling and optimization by design of experiments. Opt. Laser Technol. 2021, 144, 107380. [Google Scholar] [CrossRef]
- Akbari, M.; Saedodin, S.; Panjehpour, A.; Hassani, M.; Afrand, M.; Torkamany, M.J. Numerical simulation and designing artificial neural network for estimating melt pool geometry and temperature distribution in laser welding of Ti6Al4V alloy. Optik 2016, 127, 11161–11172. [Google Scholar] [CrossRef]
- Shakeri, S.; Ghassemi, A.; Hassani, M.; Hajian, A. Investigation of material removal rate and surface roughness in wire electrical discharge machining process for cementation alloy steel using artificial neural network. Int. J. Adv. Manuf. Technol. 2015, 82, 549–557. [Google Scholar] [CrossRef]
- Yin, F.; Mao, H.; Hua, L. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters. Mater. Des. 2011, 32, 3457–3464. [Google Scholar] [CrossRef]
- Mohajernia, B.; Mirazimzadeh, S.E.; Pasha, A.; Urbanic, R.J. Machine learning approaches for predicting geometric and mechanical characteristics for single P420 laser beads clad onto an AISI 1018 substrate. Int. J. Adv. Manuf. Technol. 2021, 118, 3691–3710. [Google Scholar] [CrossRef]
- Mondal, S.; Bandyopadhyay, A.; Pal, P.K. Application of artificial neural network for the prediction of laser cladding process characteristics at Taguchi-based optimized condition. Int. J. Adv. Manuf. Technol. 2013, 70, 2151–2158. [Google Scholar] [CrossRef]
- Aggarwal, K.; Urbanic, R.J.; Saqib, S.M. Development of predictive models for effective process parameter selection for single and overlapping laser clad bead geometry. Rapid Prototyp. J. 2018, 24, 214–228. [Google Scholar] [CrossRef]
- Hongyu, L.; Hui, C.; Ying, W.; Yong, C.; Wei, Y. Prediction of two-dimensional topography of laser cladding based on neural network. Int. J. Mod. Phys. B 2019, 33, 1940034. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Yang, Y.; Weng, C. Prediction on Geometrical Characteristics of Laser Energy Deposition Based on Regression Equation and Neural Network. IFAC-PapersOnLine 2020, 53, 89–96. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Fu, H.; Zhi, X.; Guo, X.; Lin, J. Prediction for Dilution Rate of AlCoCrFeNi Coatings by Laser Cladding Based on a BP Neural Network. Coatings 2021, 11, 1402. [Google Scholar] [CrossRef]
- Caiazzo, F.; Caggiano, A. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning. Materials 2018, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Chen, Z.; Cai, D.; Zhang, Q.; Kovalenko, V.; Yao, J. Prediction of Simulating and Experiments for Co-based Alloy Laser Cladding by HPDL. Phys. Procedia 2013, 50, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Maji, K. Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm. J. Mater. Eng. Perform. 2020, 29, 3334–3352. [Google Scholar] [CrossRef]
- Yang, S.; Bai, H.; Li, C.; Shu, L.; Zhang, X.; Jia, Z. Numerical Simulation and Multi-Objective Parameter Optimization of Inconel718 Coating Laser Cladding. Coatings 2022, 12, 708. [Google Scholar] [CrossRef]
- Ahsan, N.; Khoda, B. AM optimization framework for part and process attributes through geometric analysis. Addit. Manuf. 2016, 11, 85–96. [Google Scholar] [CrossRef]
- Liu, J.C.; Ni, L.B. Prediction of laser clad parameters based on neural network. Mater. Technol. 2012, 27, 11–14. [Google Scholar] [CrossRef]
- Xu, Z.M.; Wu, H.B.; Hong, Z.H. Quality Prediction of Laser Cladding Based on Evolutionary Neural Network. Appl. Mech. Mater. 2010, 44–47, 1012–1017. [Google Scholar] [CrossRef]
- Liu, H.; Qin, X.; Huang, S.; Jin, L.; Wang, Y.; Lei, K. Geometry Characteristics Prediction of Single Track Cladding Deposited by High Power Diode Laser Based on Genetic Algorithm and Neural Network. Int. J. Precis. Eng. Manuf. 2018, 19, 1061–1070. [Google Scholar] [CrossRef]
- Pang, Y.; Fu, G.; Wang, M.; Gong, Y.; Yu, S.; Xu, J.; Liu, F. Parameter Optimization of High Deposition Rate Laser Cladding Based on the Response Surface Method and Genetic Neural Network Model. Chin. J. Lasers 2021, 48, 0602112. [Google Scholar] [CrossRef]
- Yu, J.; Sun, W.; Huang, H.; Wang, W.; Hu, Y. Crack Sensitivity Control of Nickel-Based Laser Coating Based on Genetic Algorithm and Neural Network. Coatings 2019, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Youwen, Y.; Zongjun, T.; Hu, P.; Dongsheng, W.; Lida, S. Geometry quality prediction of NI-based superalloy coating by laser cladding based on neural network and genetic algorithm. Trans. China Weld. Inst. 2013, 34, 78–82. [Google Scholar]
- Xiao, T.T.; Cai, C.Z.; Tang, J.L.; Huang, S.J. Modeling of transition temperature for pulsed laser deposition NdBa2Cu3O7-δ thin films via support vector regression. Int. J. Mod. Phys. B 2013, 27, 1362040. [Google Scholar] [CrossRef]
- Pan, X.; Pang, X.; Wang, H.; Xu, Y. A safe screening based framework for support vector regression. Neurocomputing 2018, 287, 163–172. [Google Scholar] [CrossRef]
- Wang, T.; Qi, J.; Xu, H.; Wang, Y.; Liu, L.; Gao, D. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. ISA Trans. 2016, 60, 156–163. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zeng, Y.; Shao, H.; Hu, H.; Xu, X. Novel motor fault detection scheme based on one-class tensor hyperdisk. Knowl. Based Syst. 2023, 262, 110259. [Google Scholar] [CrossRef]
- Chen, T.; Wu, W.; Li, W.; Liu, D. Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt. Laser Technol. 2019, 116, 345–355. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, M.; Kang, D.; Sang, Y.; Zhang, Z.; Jin, X. Prediction of Geometric Characteristics of Melt Track Based on Direct Laser Deposition Using M-SVR Algorithm. Materials 2021, 14, 7221. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Huang, Y.; Yang, Y. Size Prediction of Directed Energy Deposited Cladding Tracks Based on Support Vector Regression. Chin. J. Lasers 2020, 47, 0802007. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, B.; Tang, Z.; Cao, W. Application of a Bio-Inspired Algorithm in the Process Parameter Optimization of Laser Cladding. Machines 2022, 10, 263. [Google Scholar] [CrossRef]
- Jaber, A.; Lafon, P.; Younes, R. A branch-and-bound algorithm based on NSGAII for multi-objective mixed integer nonlinear optimization problems. Eng. Optim. 2021, 54, 1004–1022. [Google Scholar] [CrossRef]
- Peng, S.; Li, T.; Zhao, J.; Lv, S.; Tan, G.Z.; Dong, M.; Zhang, H. Towards energy and material efficient laser cladding process: Modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II. J. Clean. Prod. 2019, 227, 58–69. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, Z.; Liu, W.; Tian, G.; Gao, Y.; Xing, F.; Suo, Y.; Song, B. An energy-efficient method of laser remanufacturing process. Sustain. Energy Technol. Assess. 2022, 52, 102201. [Google Scholar] [CrossRef]
- Shu, L.; Li, J.; Wu, H.; Heng, Z. Optimization of Multi-Track Laser-Cladding Process of Titanium Alloy Based on RSM and NSGA-II Algorithm. Coatings 2022, 12, 1301. [Google Scholar] [CrossRef]
- Zhao, K.; Liang, X.; Wang, W.; Yang, P.; Hao, Y.; Zhu, Z. Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II. Chin. J. Lasers 2020, 47, 0102004. [Google Scholar] [CrossRef]
- Vahabli, E.; Rahmati, S. Improvement of FDM parts’ surface quality using optimized neural networks—medical case studies. Rapid Prototyp. J. 2017, 23, 825–842. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation. Int. J. Energy Res. 2020, 45, 413–428. [Google Scholar] [CrossRef]
- Xu, S.-H.; Mu, X.-D.; Chai, D.; Zhao, P. Multi-objective quantum-behaved particle swarm optimization algorithm with double-potential well and share-learning. Optik 2016, 127, 4921–4927. [Google Scholar] [CrossRef]
- Pant, P.; Chatterjee, D. Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition process. Surf. Interfaces 2020, 21, 100699. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, T.; Wang, H.; Li, S.; Liu, D. Process Parameter Optimization When Preparing Ti(C, N) Ceramic Coatings Using Laser Cladding Based on a Neural Network and Quantum-Behaved Particle Swarm Optimization Algorithm. Appl. Sci. 2020, 10, 6331. [Google Scholar] [CrossRef]
- Ma, M.; Xiong, W.; Lian, Y.; Han, D.; Zhao, C.; Zhang, J. Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm. Surf. Coat. Technol. 2019, 381, 125129. [Google Scholar] [CrossRef]
- Ngwoke, C.C.; Mahamood, R.M.; Aigbodion, V.S.; Jen, T.-C.; Adedeji, P.A.; Akinlabi, E.T. Soft computing-based process optimization in laser metal deposition of Ti-6Al-4 V. Int. J. Adv. Manuf. Technol. 2022, 120, 1079–1093. [Google Scholar] [CrossRef]
- Singh, A.K.; Bal, K.S.; Dey, D.; Das, A.K.; Pal, A.R.; Pratihar, D.K.; Choudhury, A.R. Experimental investigation and parametric optimization for minimization of dilution during direct laser metal deposition of tungsten carbide and cobalt powder mixture on SS304 substrate. Powder Technol. 2021, 390, 339–353. [Google Scholar] [CrossRef]
- Zhou, Z.; Du, Y.; He, G.; Xu, L.; Shu, L. Optimization and Characterization of Laser Cladding of 15-5PH Coating on 20Cr13 Stainless Steel. J. Mater. Eng. Perform. 2022, 32, 962–977. [Google Scholar] [CrossRef]
- Sohrabpoor, H. Analysis of laser powder deposition parameters: ANFIS modeling and ICA optimization. Optik 2016, 127, 4031–4038. [Google Scholar] [CrossRef]
- Liang, X.; Wang, W.; Zhao, K.; Hao, Y.; Yang, P.; Zhu, Z. Application of random forest re-gression analysis in trace geometry prediction of laser cladding. Chin. J. Nonferrous Met. 2020, 30, 1644–1652. [Google Scholar] [CrossRef]
Authors [Year/Reference] | Substrate | Cladding Material | Clad Height | Clad Width | Clad Depth | Dilution Ratio |
---|---|---|---|---|---|---|
Ansari 2016 [71] | Inconel 738 superalloy | NiCrAlY powder | P2V−3/2F | P3/2V−1/3 | PV2/3F−2/3 | VF−1 |
Shayanfar 2020 [72] | ASTM A592 steel | 625 powder | P1/2V−2F2 | P1/2V−1/5 | P3V−1/2 F3/4 | P1/2V2F−3/4 |
Erfanmanesh 2017 [73] | AISI 321 steel | WC-12Co powder | P2V−2F1/4 | PV−1/2 | P2V1/4F−1/4 | P1/2V2F−1 |
Nabhani 2017 [74] | Ti-6Al-4V | Ti-6Al-4V powder | PV−1F1/4 | PV−1/3 | PVF−1/8 | VF−1/2 |
Authors [Year/Reference] | Substrate | Cladding Material | Response Indexes | Optimization Variables | Optimal Process Parameters |
---|---|---|---|---|---|
Lujun Cui 2021 [82] | ZG310-570 (ZG45) | Co-Cr-W alloy power | Aspect ratio, dilution rate, clad width, clad height, clad depth | Laser power | 1400 W~1700 W |
Powder feeding rate | 15 g/min~20 g/min | ||||
Scanning speed | 5 mm/s~6 mm/s | ||||
Tiankai Li 2022 [83] | 45 steel | Ni60PTA alloy powder | Dilution rate, ratio of layer width to height, contact angle | Laser power | 1477 W |
Powder feeding rate | 17.5 mg/s | ||||
Scanning speed | 5 mm/s | ||||
Zupeng Wu 2019 [84] | 45 steel | Ni60A alloy power | Porosity area | Laser power | 1524.8 W |
Powder feeding rate | 5.20 g/min | ||||
Scanning speed | 6.72 mm/s | ||||
Ali Khorram 2019 [85] | Inconel 718 superalloy | 75Cr3C2 + 25(80Ni20Cr) powder | Clad width, clad height, clad angle | Laser frequency | 20 Hz |
Pulse width | 12.9 ms | ||||
Scanning speed | 5.43 mm/s | ||||
Guofu Lian 2018 [86] | AISI/SAE 1045 steel | W6Mo5Cr4V2 powder | Multi-track clad width, flatness ratio, dilution rate | Laser power | 1.5 kW |
Scanning speed | 6 mm/s | ||||
Gas flow | 1018.81 L/h | ||||
Overlap rate | 23.47% | ||||
Sha Wu 2021 [87] | 42CrMo alloy | Ni60A-25% WC powder | Dilution rate, unit effective area | Laser power | 2799.93 W |
Scanning speed | 236.84 mm/min | ||||
Powder feeding rate | 5 g/min | ||||
Spot diameter | 3 mm |
Authors [Year/Reference] | Optimization Method | Substrate | Cladding Material | Evaluation Indexes | Process Parameters | Optimal Process Parameters |
---|---|---|---|---|---|---|
Pengfei Fan 2020 [99] | Orthogonal experiments | 15 M nNi4M o steel | Co50 powder and WC powder | Clad depth, clad width, clad height, dilution rate, hardness | Laser power | 2.4 kW |
Powder feeding rate | 0.5 g/s | |||||
Scanning speed | 7 mm/s | |||||
Javad Marzban 2015 [100] | PCA with TOPSIS | AISI 1040 | Ni-Cr-Mo powders | Clad height, clad width, clad depth | Laser power | 1 kw |
Powder feeding rate | 8 mg/min | |||||
Scanning speed | 0.5 m/min | |||||
Qianting Wang 2020 [101] | PCA with GRA | AISI 1045 | Fe50 powder and TiC powder | Clad width, flatness, non-fusion area | Laser power | 1.77 KW |
Power ratio | 35.28% | |||||
Overlapping ratio | 24.06% | |||||
Defocus amount | −0.44 mm | |||||
Wanxu Liang 2021 [102] | FCE with IAHP | 45 steel | 316 L stainless steel powder | Coating profile, microstructure, mechanical properties | Laser power | ≤1200 W |
Scanning speed | 5~7 mm/s | |||||
Overlap rate | 30~40% | |||||
L. Reddy 2018 [103] | Theoretical–empirical model | 15Mo3 | SHS 7170 powder | Powder deposition efficiency, dilution, porosity | Laser power | 1000 W |
Powder feeding rate | 4 g/min | |||||
Scanning speed | 300 mm/min | |||||
Jyoti Menghani 2021 [105] | Desirability function approach | AISI 316 | AlFeCuCrCoNi high-entropy powder | Clad height, clad depth, clad width, percentage dilution | Laser power | 1.1 kW |
Powder feeding rate | 4 g/min | |||||
Scanning speed | 500 mm/min | |||||
Mahmoud Moradi 2021 [109] | Design Expert statistical software | 4130 alloy steel | Inconel 718 powder | Clad height, clad width, standard deviation of microhardness, the stability of additively manufactured walls | Scanning speed | 2.5 mm/s |
Powder feeding rate | 28.52 g/min | |||||
Scanning strategies (unidirectional, bidirectional) | Unidirectional |
Authors [Year/Reference] | Substrate | Cladding Material | Optimization Method | Prediction Error | |||
---|---|---|---|---|---|---|---|
Changhui Song 2020 [117] | 316 L stainless steel | 316 L stainless steel powder | BPNN | Clad wight | Clad height | ||
2.79% | 3.09% | ||||||
Yutao Li 2021 [118] | 40CrNiMo alloy steel | AlCoCrFeNi high-entropy alloy powder | BPNN | Dilution rate | |||
5.89% | |||||||
Fabrizia Caiazzo 2018 [119] | 2024 aluminum alloy | 2024 aluminum alloy powder | ANN | Laser power | Scanning speed | Powder feeding rate | |
2.0% | 5.8% | 5.5% |
Authors [Year/Reference] | Substrate | Cladding Material | Optimization Method | Prediction Error | |
---|---|---|---|---|---|
Xiyi Chen 2021 [135] | 316 L stainless steel | 316 L stainless steel powder | BPNN | Clad width | Clad height |
15% | 6% | ||||
M-SVR | Clad width | Clad height | |||
5% | 5% | ||||
Yao Wang 2020 [136] | 316 L stainless steel | Fe powder | BPNN | Clad width | Clad height |
6.72% | 7.96% | ||||
RBF-SVR | Clad width | Clad height | |||
4.58% | 5.33% |
Authors [Year/Reference] | Substrate | Cladding Material | Response Values before and after Optimization | ||||
---|---|---|---|---|---|---|---|
Xingyu Jiang 2022 [140] | 45 steel plate | 304 L powder | Response | Energy consumption (J) | Powder utilization | Microhardness (HV) | Aspect ratio |
Before | 2,972,340.405 | 43% | 221 | 3.6 | |||
After | 1,798,861.43 | 46% | 235 | 4.5 | |||
Linsen Shu 2022 [141] | TC4 plate | TC4 alloy powder | Response | Wear depth (µm) | Wear width (µm) | Microhardness (HV) | Average mean friction coefficient |
Before | 74.54 | 2459.64 | 429.5 | 0.374 | |||
After | 56.64 | 1884.79 | 473.3 | 0.293 | |||
Zhao Kai 2020 [142] | 20 steel | Inconel 625 powder | Response | Efficiency (mm2·s−1) | Heat-affected zone depth | Microhardness (HV) | Dilution |
Before | 15.24 | 0.855 | 186.433 | 0.518 | |||
After | 16.17 | 0.736 | 218.337 | 0.32 |
Authors [Year/Reference] | Substrate | Cladding Material | Optimization Method | Predicted Error | ||
---|---|---|---|---|---|---|
Zhijie Zhou 2022 [151] | 20Cr13 stainless steel | 15-5PH powder | BPNN | Clad height MSE (10–3) | Clad weight MSE (10–3) | Dilution MSE (10–3) |
1.053 | 0.642 | 4.969 | ||||
GWO-BPNN | Clad height MSE (10–3) | Clad weight MSE (10–3) | Dilution MSE (10–3) | |||
0.161 | 0.715 | 0.267 | ||||
Hamed Sohrabpoor 2016 [152] | A36 mild steel | Fe-based alloy powder | ANFIS | Powder catchment efficiency | Clad height | Clad width |
7.62% | 8.36% | −3.83% | ||||
Liang Xudong 2020 [153] | Stainless steel | Inconel 625 powder | RF | Laser power | Scanning speed | Powder feeding rate |
1.17% | 3.43% | 3.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Liu, W.; Hong, Y.; Sohan, H.M.S.; Tong, Y.; Hu, Y.; Zhang, M.; Zhang, J.; Xiang, D.; Fu, H.; et al. An Overview of Technological Parameter Optimization in the Case of Laser Cladding. Coatings 2023, 13, 496. https://doi.org/10.3390/coatings13030496
Wang K, Liu W, Hong Y, Sohan HMS, Tong Y, Hu Y, Zhang M, Zhang J, Xiang D, Fu H, et al. An Overview of Technological Parameter Optimization in the Case of Laser Cladding. Coatings. 2023; 13(3):496. https://doi.org/10.3390/coatings13030496
Chicago/Turabian StyleWang, Kaiming, Wei Liu, Yuxiang Hong, H. M. Shakhawat Sohan, Yonggang Tong, Yongle Hu, Mingjun Zhang, Jian Zhang, Dingding Xiang, Hanguang Fu, and et al. 2023. "An Overview of Technological Parameter Optimization in the Case of Laser Cladding" Coatings 13, no. 3: 496. https://doi.org/10.3390/coatings13030496
APA StyleWang, K., Liu, W., Hong, Y., Sohan, H. M. S., Tong, Y., Hu, Y., Zhang, M., Zhang, J., Xiang, D., Fu, H., & Ju, J. (2023). An Overview of Technological Parameter Optimization in the Case of Laser Cladding. Coatings, 13(3), 496. https://doi.org/10.3390/coatings13030496