Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological Investigations of Tungsten Surfaces Exposed to H2 and D2 Plasmas
3.2. Morphological Investigations of the Collected Tungsten Film-like Structure and Dust
3.3. Chemical and Compositional Investigations of the Collected Tungsten Dust
4. Discussion
4.1. Tungsten Surfaces Exposed to H2 and D2 Plasma
4.2. Tungsten Film-like Structure and Dust Collected at Different Distances
4.3. Chemical and Compositional Analyses of Tungsten Surfaces, Film-like Structures, and Dust
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bigot, B. ITER assembly phase: Progress toward first plasma. Fusion Eng. Des. 2021, 164, 112207. [Google Scholar] [CrossRef]
- Rubel, M.; Widdowson, A.; Grzonka, J.; Fortuna-Zalesna, E.; Moon, S.; Petersson, P.; Ashikawa, N.; Asakura, N.; Hamaguchi, D.; Hatano, Y.; et al. Dust generation in tokamaks: Overview of beryllium and tungsten dust characterization in JET with the ITER-like wall. Fusion Eng. Des. 2018, 136, 579–586. [Google Scholar] [CrossRef]
- Grisolia, C.; Rosanvallon, S.; Sharpe, P.; Winter, J. Micro-particles in ITER: A comprehensive review. J. Nucl. Mater. 2009, 386–388, 871–873. [Google Scholar] [CrossRef]
- El-Kharbachi, A.; Chêne, J.; Garcia-Argote, S.; Marchetti, L.; Martin, F.; Miserque, F.; Vrel, D.; Redolfi, M.; Malard, V.; Grisolia, C.; et al. Tritium absorption/desorption in ITER-like tungsten particles. Int. J. Hydrogen Energy 2014, 39, 10525–10536. [Google Scholar] [CrossRef]
- Grisolia, C.; Hodille, E.; Chene, J.; Garcia-Argote, S.; Pieters, G.; El-Kharbachi, A.; Marchetti, L.; Martin, F.; Miserque, F.; Vrel, D.; et al. Tritium absorption and desorption in ITER relevant materials: Comparative study of tungsten dust and massive samples. J. Nucl. Mater. 2015, 463, 885–888. [Google Scholar] [CrossRef]
- Bernard, E.; Sakamoto, R.; Hodille, E.; Kreter, A.; Autissier, E.; Barthe, M.-F.; Desgardin, P.; Schwarz-Selinger, T.; Burwitz, V.; Feuillastre, S.; et al. Tritium retention in W plasma-facing materials: Impact of the material structure and helium irradiation. Nucl. Mater. Energy 2019, 19, 403–410. [Google Scholar] [CrossRef]
- Peillon, S.; Dougniaux, G.; Payet, M.; Bernard, E.; Pieters, G.; Feuillastre, S.; Garcia-Argote, S.; Gensdarmes, F.; Arnas, C.; Miserque, F.; et al. Dust sampling in WEST and tritium retention in tokamak-relevant tungsten particles. Nucl. Mater. Energy 2020, 24, 100781. [Google Scholar] [CrossRef]
- Mihailescu, M.I.; Nita, S.L. A Searchable Encryption Scheme with Biometric Authentication and Authorization for Cloud Environments. Cryptography 2022, 6, 8. [Google Scholar] [CrossRef]
- Nita, S.L.; Mihailescu, M.I.; Pau, V.C. Security and Cryptographic Challenges for Authentication Based on Biometrics Data. Cryptography 2018, 2, 39. [Google Scholar] [CrossRef]
- Nita, S.L.; Mihailescu, M.I. A Searchable Encryption Scheme Based on Elliptic Curves. In Web, Artificial Intelligence and Network Applications, WAINA 2020; Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1150. [Google Scholar] [CrossRef]
- Delaporte-Mathurin, R.; Hodille, E.; Mougenot, J.; Charles, Y.; Grisolia, C. Finite element analysis of hydrogen retention in ITER plasma facing components using FESTIM. Nucl. Mater. Energy 2019, 21, 100709. [Google Scholar] [CrossRef]
- Hodille, E.A.; Payet, M.; Marascu, V.; Peillon, S.; Mougenot, J.; Ferro, Y.; Delaporte-Mathurin, R.; Leblond, F.; Bernard, E.; Grisolia, C. Modelling tritium adsorption and desorption from tungsten dust with a surface kinetic model. Nucl. Fusion 2021, 61, 086030. [Google Scholar] [CrossRef]
- Boda, A.; Sk, M.A.; Shenoy, K.; Mohan, S. Diffusion, permeation and solubility of hydrogen, deuterium and tritium in crystalline tungsten: First principles DFT simulations. Int. J. Hydrogen Energy 2020, 45, 29095–29109. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, B.; Shi, L. Evolution of bubble in tungsten irradiated by deuterium of low energy and high flux by molecular dynamics simulations. Appl. Surf. Sci. 2022, 606, 154715. [Google Scholar] [CrossRef]
- Byeon, W.; Noh, S. Deuterium transport in ITER-grade tungsten. J. Nucl. Mater. 2021, 544, 152675. [Google Scholar] [CrossRef]
- Koike, A.; Nakata, M.; Yamazaki, S.; Wada, T.; Sun, F.; Zhao, M.; Yoshida, N.; Hanada, K.; Oya, Y. Evaluation of hydrogen retention behavior in tungsten exposed to hydrogen plasma in QUEST. Nucl. Mater. Energy 2021, 26, 100856. [Google Scholar] [CrossRef]
- Sizyuk, T.; Abrams, T. Dynamics of deuterium retention and desorption from plasma-facing materials in fusion reactor-relevant conditions. J. Nucl. Mater. 2022, 572, 154095. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Chiu, Y.; Morgan, T.; Guo, W.; Li, K.; Yuan, Y.; Xu, B.; Liu, W. Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma. Acta Mater. 2020, 193, 19–27. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Li, C.; Guo, W.; Yuan, Y.; Zhang, H.; Wang, P.; Cheng, L.; Lu, G.-H. Dependence of deuterium retention and surface blistering on deuterium plasma exposure temperature and fluence in lanthanum oxide doped tungsten. Nucl. Mater. Energy 2022, 32, 101217. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, Z.; Xia, T.; Wang, Z.; Wu, J.; Cao, X.; Zhu, K. Deuterium retention and desorption behavior of W-Ta-Cr-V high entropy alloy. J. Nucl. Mater. 2022, 568, 153897. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, L.; Zhang, H.; Yao, W.; He, W.; Li, Y.; Wang, P. Surface modification and deuterium retention of tungsten and tungsten-rhenium alloys exposed to deuterium plasma. Nucl. Mater. Energy 2021, 29, 101079. [Google Scholar] [CrossRef]
- Han, W.; Zhu, K.; Yan, J.; Xia, T.; Wang, Z.; Ye, X.; Chen, C.A.; Wu, J.; Ma, Y. Blistering and deuterium retention in Nb-doped W exposed to low-energy deuterium plasma. Nucl. Mater. Energy 2020, 23, 100741. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Zhang, Y.; Kreter, A.; Shi, L.-Q.; Yuan, Y.; Cheng, L.; Linsmeier, C.; Lu, G.-H. Aggravated blistering and increased deuterium retention in iron-damaged tungsten after exposure to deuterium plasma with various surface temperatures. Nucl. Fusion 2018, 58, 106005. [Google Scholar] [CrossRef]
- Shu, W.; Nakamichi, M.; Alimov, V.; Luo, G.-N.; Isobe, K.; Yamanishi, T. Deuterium retention, blistering and local melting at tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater. 2009, 390–391, 1017–1021. [Google Scholar] [CrossRef]
- Choi, D.-S.; Uebing, C.; Gomer, R. Diffusion of hydrogen and deuterium on stepped tungsten surfaces I. W(123). Surf. Sci. 1991, 259, 139–150. [Google Scholar] [CrossRef]
- Uebing, C.; Gomer, R. Diffusion of hydrogen and deuterium on stepped tungsten surfaces II. W(O23). Surf. Sci. 1991, 259, 151–161. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bazavan, M.; Ionita, E.R.; Dinescu, G. Characterization of an argon radiofrequency plasma jet discharge continuously passing from low to atmospheric pressure. Plasma Sources Sci. Technol. 2012, 21, 055010. [Google Scholar] [CrossRef]
- Marascu, V.; Stancu, C.; Satulu, V.; Bonciu, A.; Grisolia, C.; Dinescu, G. Material Erosion and Dust Formation during Tungsten Exposure to Hollow-Cathode and Microjet Discharges. Appl. Sci. 2020, 10, 6870. [Google Scholar] [CrossRef]
- Marascu, V.; Lazea–Stoyanova, A.; Bonciu, A.; Satulu, V.; Dinescu, G. Tungsten particles fabrication by a microjet discharge. Mater. Res. Express 2020, 7, 066509. [Google Scholar] [CrossRef]
- Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G. Modification of W surfaces by exposure to hollow cathode plasmas. Appl. Phys. A 2017, 123, 618. [Google Scholar] [CrossRef]
- Mărăscu, V.; Chiţescu, I.; Barna, V.; Ioniţă, M.D.; Lazea-Stoyanova, A.; Mitu, B.; Dinescu, G. Application of image recognition algorithms for the statistical description of nano- and microstructured surfaces. AIP Conf. Proc. 2016, 1722, 290006. [Google Scholar] [CrossRef]
- Wang, M.; Yang, F.; Chen, Y.; Gao, T.; Wei, J.; Ye, Z.; Gou, F. Hydrogen diffusion on the tin-covered tungsten surface: A first-principles study. J. Nucl. Mater. 2023, 577, 154282. [Google Scholar] [CrossRef]
- Tondro, A.; Taherijam, M.; Abdolvand, H. Diffusion and redistribution of hydrogen atoms in the vicinity of localized deformation zones. Mech. Mater. 2023, 177, 104544. [Google Scholar] [CrossRef]
- Wang, T.; Ren, M.; Zhu, X.-L.; Ma, X.; Yuan, Y.; Cheng, L.; Lu, G.-H. Effect of initial exposure temperature on the deuterium retention and surface blistering in tungsten. Nucl. Mater. Energy 2022, 33, 101245. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Ke, Z.-H.; Cheng, L.; Yuan, Y.; Zhang, Y.; Wang, Z.; Lu, G.-H. The effect of pre-damage distribution on deuterium-induced blistering and retention in Tungsten. Fusion Eng. Des. 2023, 189, 113494. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Cheng, L.; De Temmerman, G.; Shi, L.-Q.; Yuan, Y.; Wang, B.-Y.; Cao, X.-Z.; Lu, E.-Y.; Zhang, Y.; Lu, G.-H. Effects of stress-relief pre-annealing on deuterium trapping and diffusion in tungsten. Fusion Eng. Des. 2017, 125, 526–530. [Google Scholar] [CrossRef]
- George, I.; Uboldi, C.; Bernard, E.; Sobrido, M.S.; Dine, S.; Hagège, A.; Vrel, D.; Herlin, N.; Rose, J.; Orsière, T.; et al. Toxicological Assessment of ITER-Like Tungsten Nanoparticles Using an In Vitro 3D Human Airway Epithelium Model. Nanomaterials 2019, 9, 1374. [Google Scholar] [CrossRef]
Name Of W Plates | Plasma Exposure Time | Mean Ejected Volume (µm3) |
---|---|---|
W ini 1: HC-H2 | 30 min | 2582 (~2.6 × 103) |
60 min | 114,126 (~1.1 × 105) | |
W ini 2: HC-D2 | 30 min | 15,459 (~1.5 × 104) |
60 min | 32,760 (~3.3 × 104) |
Name of W Dust Collectors (The Nozzle–Collector Distances) | Plasma Exposure | Dust Collecting Time | XPS: Atomic % Contributions | |
---|---|---|---|---|
W4f | O1s | |||
6 mm | Hydrogen Plasma | 15 min | 48.14 | 51.86 |
10 mm | 15 min | 39.63 | 60.37 | |
20 mm | 15 min | 33.76 | 66.24 | |
40mm | 15 min | 29.98 | 70.02 | |
6 mm | Deuterium Plasma | 15 min | 44.13 | 55.87 |
10 mm | 15 min | 41.31 | 58.69 | |
20 mm | 15 min | 37.03 | 62.97 | |
40 mm | 15 min | 30.42 | 69.58 |
Name of W Dust Collectors (The Nozzle–Collector Distances) | Plasma Exposure | Dust Collecting Time | EDS: Weight % Contributions | |
---|---|---|---|---|
W L | O K | |||
6 mm | Hydrogen Plasma | 15 min | 13.61 | 1.68 |
10 mm | 15 min | 11.53 | 1.23 | |
20 mm | 15 min | 4.46 | 1.55 | |
40mm | 15 min | 1.8 | 2.3 | |
6 mm | Deuterium Plasma | 15 min | 11.95 | 1.85 |
10 mm | 15 min | 8.32 | 1.01 | |
20 mm | 15 min | 3.57 | 1.99 | |
40 mm | 15 min | 1.55 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marascu, V.; Stancu, C.; Acsente, T.; Bonciu, A.; Constantin, C.; Dinescu, G. Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies. Coatings 2023, 13, 503. https://doi.org/10.3390/coatings13030503
Marascu V, Stancu C, Acsente T, Bonciu A, Constantin C, Dinescu G. Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies. Coatings. 2023; 13(3):503. https://doi.org/10.3390/coatings13030503
Chicago/Turabian StyleMarascu, Valentina, Cristian Stancu, Tomy Acsente, Anca Bonciu, Catalin Constantin, and Gheorghe Dinescu. 2023. "Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies" Coatings 13, no. 3: 503. https://doi.org/10.3390/coatings13030503
APA StyleMarascu, V., Stancu, C., Acsente, T., Bonciu, A., Constantin, C., & Dinescu, G. (2023). Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies. Coatings, 13(3), 503. https://doi.org/10.3390/coatings13030503