Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review
Abstract
:1. Introduction
- the low-speed liquid–solid impact
- the high-speed liquid–solid impact
- the liquid impingement erosion of metals
- the erosion-mitigation materials and techniques
2. Low-Speed Liquid–Solid Impact
2.1. Surface Wetting, Static and Dynamic Contact Angle, Surface Texture, and Hydrophobicity
2.2. Air Bubble Entrapment, Splashing, Fingering, and Crown Formation
2.3. Impact on Non-Flat, Inclined Surfaces and Multiple-Droplet Impact and Coalescence
3. High-Speed Liquid–Solid Impact
3.1. Compression Waves, High-Pressure Front Formation, and Lateral Jetting
3.2. Expansion Waves, Cavitation, and Vapor Bubble Collapse
3.3. Liquid Droplet Impact on Shallow Liquid Pools and Air Bubble Entrapment
3.4. Fluid–Solid Interaction (FSI) Modelling; One-Way vs. Two-Way Coupling
4. Liquid Impingement Erosion of Metals
4.1. Threshold Conditions and Erosion Damage Regimes in Metals
4.2. Erosion Damage Accumulation Mechanisms in Metals
4.3. Role of Solid Properties on Erosion Performance of Metals
5. Water Droplet Erosion Mitigation Materials and Techniques
5.1. Materials and Process Selection
5.2. Surface Treatment
5.2.1. Laser Surface Treatment
5.2.2. Gas Nitriding and Nitro-Carburizing
5.2.3. Laser-Assisted Nitriding
5.3. Surface Coatings (Welding/Cladding, Thermal Spray Coatings, Vapor-Based Coatings)
5.3.1. Laser Surface Cladding
5.3.2. Thermal Spray Coating
5.3.3. Vapour Deposition
5.4. Combined Solutions
5.5. Superhydrophobic Surfaces
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Preece, C.M.; Macmillan, N.H. Erosion. Annu. Rev. Mater. Sci. 1977, 7, 95–121. [Google Scholar] [CrossRef]
- Nomoto, H. Solid particle erosion analysis and protection design for steam turbines. In Advances in Steam Turbines for Modern Power Plants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–239. [Google Scholar]
- Kołodziejczak, P.; Bober, M.; Chmielewski, T. Wear Resistance Comparison Research of High-Alloy Protective Coatings for Power Industry Prepared by Means of CMT Cladding. Appl. Sci. 2022, 12, 4568. [Google Scholar] [CrossRef]
- Shirazi, S.A.; Shadley, J.R.; McLaury, B.S.; Rybicki, E.F. A procedure to predict solid particle erosion in elbows and tees. J. Press. Vessel Technol. Trans. ASME 1995, 117, 45–52. [Google Scholar] [CrossRef]
- Field, J.E.; Dear, J.P.; Ogren, J.E. The effects of target compliance on liquid drop impact. J. Appl. Phys. 1989, 65, 533–540. [Google Scholar] [CrossRef]
- Desale, G.R.; Gandhi, B.K.; Jain, S.C. Slurry erosion of ductile materials under normal impact condition. Wear 2008, 264, 322–330. [Google Scholar] [CrossRef]
- Desale, G.R.; Gandhi, B.K.; Jain, S.C. Effect of erodent properties on erosion wear of ductile type materials. Wear 2006, 261, 914–921. [Google Scholar] [CrossRef]
- Neville, A.; Hodgkiess, T.; Dallas, J.T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications. Wear 1995, 186–187, 497–507. [Google Scholar] [CrossRef]
- Zhang, Y.; Reuterfors, E.P.; McLaury, B.S.; Shirazi, S.A.; Rybicki, E.F. Comparison of computed and measured particle velocities and erosion in water and air flows. Wear 2007, 263, 330–338. [Google Scholar] [CrossRef]
- Vogeland, A.; Lauterborn, W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 1988, 84, 719–731. [Google Scholar] [CrossRef]
- Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998, 361, 75–116. [Google Scholar] [CrossRef]
- Heymann, F.J. Erosion by Liquids. Mach. Des. 1970, 10, 118–124. [Google Scholar]
- Kleis, I.; Kulu, P. Solid Particle Erosion; Springer London: London, UK, 2008; ISBN 978-1-84800-028-5. [Google Scholar]
- Wood, R.J.K. Liquid Impingement Erosion. In Friction, Lubrication, and Wear Technology, Vol 18, ASM Handbook; Totten, G.E., Ed.; ASM International: Novelty, OH, USA, 2017; pp. 302–312. [Google Scholar]
- Chiang, H.-W.D.; Wang, P.-Y.; Tsai, B.-J. Gas Turbine Power Augmentation by Overspray Inlet Fogging. J. Energy Eng. 2007, 133, 224–235. [Google Scholar] [CrossRef]
- Gujba, A.K.; Hackel, L.; Kevorkov, D.; Medraj, M. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages. Wear 2016, 358–359, 109–122. [Google Scholar] [CrossRef]
- Mahdipoor, M.S.; Kirols, H.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V. Sci. Rep. 2015, 5, 14182. [Google Scholar] [CrossRef] [Green Version]
- Kamkar, N.; Bridier, F.; Jedrzejowski, P.; Bocher, P. Water droplet impact erosion damage initiation in forged Ti-6Al-4V. Wear 2015, 322–323, 192–202. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, B.; Zhang, D.; Xie, Y. Experimental investigation on the water droplet erosion characteristics of blade materials for steam turbine. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5103–5115. [Google Scholar] [CrossRef]
- Ahmad, M.; Casey, M.; Sürken, N. Experimental assessment of droplet impact erosion resistance of steam turbine blade materials. Wear 2009, 267, 1605–1618. [Google Scholar] [CrossRef]
- Kirols, H.S.; Kevorkov, D.; Uihlein, A.; Medraj, M. Water droplet erosion of stainless steel steam turbine blades. Mater. Res. Express 2017, 4, 086510. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Medraj, M. Water droplet erosion of wind turbine blades: Mechanics, testing, modeling and future perspectives. Materials 2020, 13, 157. [Google Scholar] [CrossRef] [Green Version]
- Ameri, M.; Nabati, H.; Keshtgar, A. Gas turbine power augmentation using fog inlet air-cooling system. In Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2004, Manchester, UK, 19–22 July 2004; Volume 1, pp. 73–78. [Google Scholar]
- Ryzhenkov, V.A.; Lebedeva, A.I.; Mednikov, A.F. Erosion wear of the blades of wet-steam turbine stages: Present state of the problem and methods for solving it. Therm. Eng. 2011, 58, 713. [Google Scholar] [CrossRef]
- Burson-Thomas, C.B.; Wellman, R.; Harvey, T.J.; Robert, W.J.K. Importance of Surface Curvature in Modeling Droplet Impingement on Fan Blades. J. Eng. Gas Turbines Power 2019, 141, 031005. [Google Scholar] [CrossRef]
- Di, J.; Wang, S.; Yan, X.; Cai, L.; Xie, Y. Experimental investigation on effect of surface strengthening process and roughness on water droplet erosion behavior in turbomachinery. Tribol. Int. 2021, 153, 106647. [Google Scholar] [CrossRef]
- Gohardani, O. Impact of erosion testing aspects on current and future flight conditions. Prog. Aerosp. Sci. 2011, 47, 280–303. [Google Scholar] [CrossRef]
- Fujisawa, N.; Yamagata, T.; Wada, K. Attenuation of wall-thinning rate in deep erosion by liquid droplet impingement. Ann. Nucl. Energy 2016, 88, 151–157. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, T.; Zhang, D.; Xie, Y. Water droplet erosion life prediction method for steam turbine blade materials based on image recognition and machine learning. J. Eng. Gas Turbines Power 2021, 143, 031009. [Google Scholar] [CrossRef]
- Gujba, A.K.; Hackel, L.; Medraj, M. Water droplet erosion performance of laser shock peened Ti-6Al-4V. Metals 2016, 6, 262. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Medraj, M. Prediction and experimental evaluation of the threshold velocity in water droplet erosion. Mater. Des. 2022, 213, 110312. [Google Scholar] [CrossRef]
- Fujisawa, K.; Ohki, M.; Fujisawa, N. Influence of surface roughness on liquid droplet impingement erosion. Wear 2019, 432–433, 202955. [Google Scholar] [CrossRef]
- Liu, B.; Ma, F. Erosion behavior of aluminum by an inclined cavitating jet. Wear 2021, 474–475, 203751. [Google Scholar] [CrossRef]
- Keegan, M.H.; Nash, D.H.; Stack, M.M. On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D Appl. Phys. 2013, 46, 383001. [Google Scholar] [CrossRef] [Green Version]
- Bartolomé, L.; Teuwen, J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades. Wind Energy 2019, 22, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Herring, R.; Domenech, L.; Renau, J.; Šakalytė, A.; Ward, C.; Dyer, K.; Sánchez, F. Assessment of a Wind Turbine Blade Erosion Lifetime Prediction Model with Industrial Protection Materials and Testing Methods. Coatings 2021, 11, 767. [Google Scholar] [CrossRef]
- Fujisawa, N.; Yamagata, T.; Takano, S.; Saito, K.; Morita, R.; Fujiwara, K.; Inada, F. The influence of material hardness on liquid droplet impingement erosion. Nucl. Eng. Des. 2015, 288, 27–34. [Google Scholar] [CrossRef]
- Mahdipoor, M.S. Water Droplet Erosion Resistant Materials and Surface Treatments. Ph.D. Thesis, Concordia University, Montreal, ON, Canada, 2016. [Google Scholar]
- Bhargava, R.K.; Meher-Homji, C.B.; Chaker, M.A.; Bianchi, M.; Melino, F.; Peretto, A.; Ingistov, S. Gas Turbine Fogging Technology: A State-of-the-Art Review—Part I: Inlet Evaporative Fogging—Analytical and Experimental Aspects. J. Eng. Gas Turbines Power 2007, 129, 443–453. [Google Scholar] [CrossRef]
- Meher-Homji, C.B.; Mee, T.R. Gas Turbine Power Augmentation by Fogging of Inlet Air. In Proceedings of the 28th Turbomachinery Symposium, College Station, TX, USA, 14–18 September 1999; pp. 93–114. [Google Scholar]
- Bhargava, R.K.; Meher-Homji, C.B.; Chaker, M.A.; Bianchi, M.; Melino, F.; Peretto, A.; Ingistov, S. Gas Turbine Fogging Technology: A State-of-the-Art Review—Part II: Overspray Fogging—Analytical and Experimental Aspects. J. Eng. Gas Turbines Power 2007, 129, 454–460. [Google Scholar] [CrossRef]
- Yasugahira, N.; Namura, K.; Kaneko, R.; Satoh, T. Erosion Resistance of Titanium Alloys for Steam Turbine Blades as Measured by Water Droplet Impingement. In Titanium Steam Turbine Blading; Jaffee, R.I., Ed.; Elsevier: Palo Alto, CA, USA, 1990; pp. 383–402. [Google Scholar]
- Martínez, A.A.R.; Martínez, F.R.; Velázquez, M.T.; Silva, F.S.; Mariscal, I.C.; Francis, J.A. The Density and Momentum Distributions of 2-Dimensional Transonic Flow in an LP-Steam Turbine. Energy Power Eng. 2012, 4, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Jadidi, M.; Mousavi, M.; Moghtadernejad, S.; Dolatabadi, A. A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate. J. Therm. Spray Technol. 2014, 24, 11–23. [Google Scholar] [CrossRef]
- Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A. A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray. Coatings 2015, 5, 576–645. [Google Scholar] [CrossRef] [Green Version]
- Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A. Numerical Modeling of Suspension HVOF Spray. J. Therm. Spray Technol. 2016, 25, 451–464. [Google Scholar] [CrossRef]
- Jadidi, M.; Yeganeh, A.Z.; Dolatabadi, A. Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates. J. Therm. Spray Technol. 2018, 27, 59–72. [Google Scholar] [CrossRef]
- Jadidi, M.; Vardelle, A.; Dolatabadi, A.; Moreau, C. Heat Transfer in Suspension Plasma Spraying. In Handbook of Thermal Science and Engineering; Springer International Publishing: Cham, Switzerland, 2018; pp. 2923–2966. ISBN 9783319266954. [Google Scholar]
- Jabbari, F.; Jadidi, M.; Wuthrich, R.; Dolatabadi, A. A Numerical Study of Suspension Injection in Plasma-Spraying Process. J. Therm. Spray Technol. 2014, 23, 3–13. [Google Scholar] [CrossRef]
- Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 1993, 12, 61–93. [Google Scholar] [CrossRef]
- Marengo, M.; Antonini, C.; Roisman, I.V.; Tropea, C. Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 2011, 16, 292–302. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Ivall, J.; Renault-Crispo, J.S.; Coulombe, S.; Servio, P. Ice-dependent liquid-phase convective cells during the melting of frozen sessile droplets containing water and multiwall carbon nanotubes. Int. J. Heat Mass Transf. 2016, 101, 27–37. [Google Scholar] [CrossRef]
- Rioboo, R.; Marengo, M.; Tropea, C. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 2002, 33, 112–124. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Lee, C.; Jadidi, M. An Introduction of Droplet Impact Dynamics to Engineering Students. Fluids 2020, 5, 107. [Google Scholar] [CrossRef]
- Bird, J.C.; Tsai, S.S.H.; Stone, H.A. Inclined to splash: Triggering and inhibiting a splash with tangential velocity. New J. Phys. 2009, 11, 063017. [Google Scholar] [CrossRef]
- Josserand, C.; Thoroddsen, S.T. Drop Impact on a Solid Surface. Annu. Rev. Fluid Mech. 2016, 48, 365–391. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, W.W.; Nagel, S.R. Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 2005, 94, 184505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghtadernejad, S.; Jadidi, M.; Johnson, Z.; Stolpe, T.; Hanson, J. Droplet impact dynamics on an aluminum spinning disk. Phys. Fluids 2021, 33, 072103. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Jadidi, M.; Hanson, J.; Johnson, Z. Dynamics of droplet impact on a superhydrophobic disk. Phys. Fluids 2022, 34, 062104. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…. Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Singh, R.K.; Hodgson, P.D.; Sen, N.; Das, S. Effect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet. Langmuir 2021, 37, 3038–3048. [Google Scholar] [CrossRef]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the cassie-baxter state to the wenzel state on textured polymer surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef]
- Lopes, D.M.; Ramos, S.M.M.; De Oliveira, L.R.; Mombach, J.C.M. Cassie-Baxter to Wenzel state wetting transition: A 2D numerical simulation. RSC Adv. 2013, 3, 24530–24534. [Google Scholar] [CrossRef]
- Eral, H.B.; ’t Mannetje, D.J.C.M.; Oh, J.M. Contact angle hysteresis: A review of fundamentals and applications. Colloid Polym. Sci. 2013, 291, 247–260. [Google Scholar] [CrossRef]
- Lam, C.N.C.; Ko, R.H.Y.; Yu, L.M.Y.; Ng, A.; Li, D.; Hair, M.L.; Neumann, A.W. Dynamic cycling contact angle measurements: Study of advancing and receding contact angles. J. Colloid Interface Sci. 2001, 243, 208–218. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Huhtamäki, T.; Ikkala, O.; Ras, R.H.A. Reliable measurement of the receding contact angle. Langmuir 2013, 29, 3858–3863. [Google Scholar] [CrossRef] [PubMed]
- Genzer, J.; Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 2006, 22, 339–360. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.; Zheng, W.; Wang, H. Fabrication of superhydrophobic surfaces for corrosion protection: A review. Mater. Sci. Technol. 2019, 35, 313–326. [Google Scholar] [CrossRef]
- Kim, S.H. Fabrication of Superhydrophobic Surfaces. J. Adhes. Sci. Technol. 2008, 22, 235–250. [Google Scholar] [CrossRef]
- Manoharan, K.; Bhattacharya, S. Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. J. Micromanufacturing 2019, 2, 59–78. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, K.; Park, J.; Hwang, B.G.; Ko, Y.; Kim, H.; Han, J.; Seo, E.; Park, Y.; Lee, S.J. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment. Sci. Rep. 2017, 7, 1981. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.; Clanet, C.; Quéré, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef]
- Khojasteh, D.; Kazerooni, M.; Salarian, S.; Kamali, R. Droplet impact on superhydrophobic surfaces: A review of recent developments. J. Ind. Eng. Chem. 2016, 42, 1–14. [Google Scholar] [CrossRef]
- Zhan, H.; Lu, C.; Liu, C.; Wang, Z.; Lv, C.; Liu, Y. Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics. Phys. Rev. Lett. 2021, 126, 234503. [Google Scholar] [CrossRef]
- Bartolo, D.; Bouamrirene, F.; Verneuil, É.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 2006, 74, 299. [Google Scholar] [CrossRef] [Green Version]
- Antonini, C.; Amirfazli, A.; Marengo, M. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces. Phys. Fluids 2012, 24, 102104. [Google Scholar] [CrossRef]
- Patil, N.D.; Bhardwaj, R.; Sharma, A. Droplet impact dynamics on micropillared hydrophobic surfaces. Exp. Therm. Fluid Sci. 2016, 74, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hou, Y.; Liu, Y.; Hao, C.; Li, M.; Chaudhury, M.K.; Yao, S.; Wang, Z. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612. [Google Scholar] [CrossRef]
- Bange, P.G.; Bhardwaj, R. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces. Theor. Comput. Fluid Dyn. 2016, 30, 211–235. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A. Shear driven droplet shedding and coalescence on a superhydrophobic surface. Phys. Fluids 2015, 27, 032106. [Google Scholar] [CrossRef]
- Yeganehdoust, F.; Amer, A.; Sharifi, N.; Karimfazli, I.; Dolatabadi, A. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow. Langmuir 2021, 37, 6278–6291. [Google Scholar] [CrossRef]
- Gomaa, H.; Tembely, M.; Esmail, N.; Dolatabadi, A. Bouncing of cloud-sized microdroplets on superhydrophobic surfaces. Phys. Fluids 2020, 32, 122118. [Google Scholar] [CrossRef]
- Hee Kwon, D.; Joon Lee, S. Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces. Appl. Phys. Lett. 2012, 100, 171601. [Google Scholar] [CrossRef]
- Yeganehdoust, F.; Attarzadeh, R.; Dolatabadi, A.; Karimfazli, I. A comparison of bioinspired slippery and superhydrophobic surfaces: Micro-droplet impact. Phys. Fluids 2021, 33, 022105. [Google Scholar] [CrossRef]
- Afkhami, S. Challenges of numerical simulation of dynamic wetting phenomena: A review. Curr. Opin. Colloid Interface Sci. 2022, 57, 101523. [Google Scholar] [CrossRef]
- Deng, T.; Varanasi, K.K.; Hsu, M.; Bhate, N.; Keimel, C.; Stein, J.; Blohm, M. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 2009, 94, 133109. [Google Scholar] [CrossRef] [Green Version]
- Jadidi, M.; Farzad, M.A.; Trepanier, J.Y.; Dolatabadi, A. Effects of Ambient Air Relative Humidity and Surface Temperature on Water Droplet Spreading Dynamics. In Proceedings of the 5th Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 15–20 July 2018. [Google Scholar]
- Feng, R.; Xu, C.; Song, F.; Wang, F.; Wang, X.L.; Wang, Y.Z. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 12373–12381. [Google Scholar] [CrossRef]
- Kota, A.K.; Kwon, G.; Tuteja, A. The design and applications of superomniphobic surfaces. NPG Asia Mater. 2014, 6, e109. [Google Scholar] [CrossRef] [Green Version]
- Kota, A.K.; Choi, W.; Tuteja, A. Superomniphobic surfaces: Design and durability. MRS Bull. 2013, 38, 383–390. [Google Scholar] [CrossRef]
- Couder, Y.; Fort, E.; Gautier, C.H.; Boudaoud, A. From bouncing to floating: Noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 2005, 94, 177801. [Google Scholar] [CrossRef] [Green Version]
- Kolinski, J.M.; Mahadevan, L.; Rubinstein, S.M. Drops can bounce from perfectly hydrophilic surfaces. EPL 2014, 108, 24001. [Google Scholar] [CrossRef] [Green Version]
- Shetabivash, H.; Dolatabadi, A. Numerical investigation of air mediated droplet bouncing on flat surfaces. AIP Adv. 2017, 7, 095003. [Google Scholar] [CrossRef] [Green Version]
- Yeganehdoust, F.; Attarzadeh, R.; Karimfazli, I.; Dolatabadi, A. A numerical analysis of air entrapment during droplet impact on an immiscible liquid film. Int. J. Multiph. Flow 2020, 124, 103175. [Google Scholar] [CrossRef]
- de Ruiter, J.; van den Ende, D.; Mugele, F. Air cushioning in droplet impact. II. Experimental characterization of the air film evolution. Phys. Fluids 2015, 27, 012105. [Google Scholar] [CrossRef]
- Tran, T.; Staat, H.J.J.; Prosperetti, A.; Sun, C.; Lohse, D. Drop impact on superheated surfaces. Phys. Rev. Lett. 2012, 108, 036101. [Google Scholar] [CrossRef] [Green Version]
- Gordillo, J.M.; Riboux, G. The initial impact of drops cushioned by an air or vapour layer with applications to the dynamic Leidenfrost regime. J. Fluid Mech. 2022, 941, A10. [Google Scholar] [CrossRef]
- Chakraborty, I.; Chubynsky, M.V.; Sprittles, J.E. Computational modelling of Leidenfrost drops. J. Fluid Mech. 2022, 936, A12. [Google Scholar] [CrossRef]
- Tang, X.; Saha, A.; Law, C.K.; Sun, C. Bouncing drop on liquid film: Dynamics of interfacial gas layer. Phys. Fluids 2019, 31, 013304. [Google Scholar] [CrossRef]
- Hao, C.; Li, J.; Liu, Y.; Zhou, X.; Liu, Y.; Liu, R.; Che, L.; Zhou, W.; Sun, D.; Li, L.; et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat. Commun. 2015, 6, 7986. [Google Scholar] [CrossRef] [Green Version]
- Mehdi-Nejad, V.; Mostaghimi, J.; Chandra, S. Air bubble entrapment under an impacting droplet. Phys. Fluids 2003, 15, 173–183. [Google Scholar] [CrossRef]
- Hicks, P.D.; Purvis, R. Liquid-solid impacts with compressible gas cushioning. J. Fluid Mech. 2013, 735, 120–149. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, N.E.; Eslamian, M. Phenomenological study and comparison of droplet impact dynamics on a dry surface, thin liquid film, liquid film and shallow pool. Exp. Therm. Fluid Sci. 2020, 112, 109977. [Google Scholar] [CrossRef]
- Roisman, I.V.; Horvat, K.; Tropea, C. Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 2006, 18, 102104. [Google Scholar] [CrossRef]
- Allen, R.F. The role of surface tension in splashing. J. Colloid Interface Sci. 1975, 51, 350–351. [Google Scholar] [CrossRef]
- Krechetnikov, R.; Homsy, G.M. Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 2009, 331, 555–559. [Google Scholar] [CrossRef]
- Fukai, J.; Shiiba, Y.; Yamamoto, T.; Miyatake, O.; Poulikakos, D.; Megaridis, C.M.; Zhao, Z. Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling. Phys. Fluids 1995, 7, 236–247. [Google Scholar] [CrossRef]
- Chandra, S.; Avedisian, C.T. On the collision of a droplet with a solid surface. Proc. R. Soc. A Math. Phys. Eng. Sci. 1991, 432, 13–41. [Google Scholar] [CrossRef]
- Pasandideh-Fard, M.; Qiao, Y.M.; Chandra, S.; Mostaghimi, J. Capillary effects during droplet impact on a solid surface. Phys. Fluids 1996, 8, 650–659. [Google Scholar] [CrossRef]
- Roisman, I.V.; Rioboo, R.; Tropea, C. Normal impact of a liquid drop on a dry surface: Model for spreading and receding. Proc. R. Soc. A Math. Phys. Eng. Sci. 2002, 458, 1411–1430. [Google Scholar] [CrossRef]
- Kim, H.Y.; Feng, Z.C.; Chun, J.H. Instability of a liquid jet emerging from a droplet upon collision with a solid surface. Phys. Fluids 2000, 12, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, N.Z.; Chandra, S.; Mostaghimi, J. Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J. Fluid Mech. 2004, 510, 353–373. [Google Scholar] [CrossRef]
- Shetabivash, H.; Ommi, F.; Heidarinejad, G. Numerical analysis of droplet impact onto liquid film. Phys. Fluids 2014, 26, 012102. [Google Scholar] [CrossRef]
- Mukherjee, S.; Abraham, J. Crown behavior in drop impact on wet walls. Phys. Fluids 2007, 19, 052103. [Google Scholar] [CrossRef]
- Trujillo, M.F.; Lee, C.F. Modeling crown formation due to the splashing of a droplet. Phys. Fluids 2001, 13, 2503–2516. [Google Scholar] [CrossRef]
- Bussmann, M.; Chandra, S.; Mostaghimi, J. Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 2000, 12, 3121–3132. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Zhang, F.; Yao, M. Numerical study of spray micro-droplet impinging on dry/wet wall. Appl. Therm. Eng. 2016, 95, 1–9. [Google Scholar] [CrossRef]
- Guo, Y.; Lian, Y.; Sussman, M. Investigation of drop impact on dry and wet surfaces with consideration of surrounding air. Phys. Fluids 2016, 28, 073303. [Google Scholar] [CrossRef]
- Jian, Z.; Josserand, C.; Popinet, S.; Ray, P.; Zaleski, S. Two mechanisms of droplet splashing on a solid substrate. J. Fluid Mech. 2018, 835, 1065–1086. [Google Scholar] [CrossRef] [Green Version]
- Pegg, M.; Purvis, R.; Korobkin, A. Droplet impact onto an elastic plate: A new mechanism for splashing. J. Fluid Mech. 2018, 839, 561–593. [Google Scholar] [CrossRef] [Green Version]
- Cossali, G.E.; Coghe, A.; Marengo, M. The impact of a single drop on a wetted solid surface. Exp. Fluids 1997, 22, 463–472. [Google Scholar] [CrossRef]
- Stow, C.D.; Hadfield, M.G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. London. A. Math. Phys. Sci. 1981, 373, 405–417. [Google Scholar] [CrossRef]
- Range, K.; Feuillebois, F. Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 1998, 203, 16–30. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Yi, X.; He, F.; Niu, F.; Hao, P. Asymmetric splash and breakup of drops impacting on cylindrical superhydrophobic surfaces. Phys. Fluids 2020, 32, 122108. [Google Scholar] [CrossRef]
- Mundo, C.; Sommerfeld, M.; Tropea, C. Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 1995, 21, 151–173. [Google Scholar] [CrossRef]
- Blake, T.D.; De Coninck, J. The influence of solid-liquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 2002, 96, 21–36. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Berger, G.M.; Mozes, S.D. The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 2006, 40, 53–59. [Google Scholar] [CrossRef]
- Ching, B.; Golay, M.W.; Johnson, T.J. Droplet impacts upon liquid surfaces. Science 1984, 226, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Oguz, H.N.; Prosperetti, A. Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 1990, 219, 143–179. [Google Scholar] [CrossRef] [Green Version]
- Pumphrey, H.C.; Elmore, P.A. The entrainment of bubbles by drop impacts. J. Fluid Mech. 1990, 220, 539–567. [Google Scholar] [CrossRef]
- THORODDSEN, S.T.; ETOH, T.G.; TAKEHARA, K. Air entrapment under an impacting drop. J. Fluid Mech. 2003, 478, 125–134. [Google Scholar] [CrossRef]
- Mirjalili, S.; Ivey, C.B.; Mani, A. Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Int. J. Multiph. Flow 2019, 116, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.; Rudman, M.; Jong-Leng, L. An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 2000, 12, 747–763. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mani, A. Transitional stages of thin air film entrapment in drop-pool impact events. J. Fluid Mech. 2020, 901, A14. [Google Scholar] [CrossRef]
- Ray, B.; Biswas, G.; Sharma, A. Regimes during liquid drop impact on a liquid pool. J. Fluid Mech. 2015, 768, 492–523. [Google Scholar] [CrossRef] [Green Version]
- Pasandideh-Fard, M.; Bussmann, M.; Chandra, S. Simulating Droplet Impact on a Substrate of Arbitrary Shape. At. Sprays 2001, 11, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yi, X.; Du, Y.; Zhang, R.; Zhang, X.; He, F.; Niu, F.; Hao, P. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces. Phys. Fluids 2019, 31, 032104. [Google Scholar] [CrossRef]
- Banitabaei, S.A.; Amirfazli, A. Droplet impact onto a solid sphere: Effect of wettability and impact velocity. Phys. Fluids 2017, 29, 062111. [Google Scholar] [CrossRef]
- Khurana, G.; Sahoo, N.; Dhar, P. Phenomenology of droplet collision hydrodynamics on wetting and non-wetting spheres. Phys. Fluids 2019, 31, 072003. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Min, J. Maximum spreading of droplets impacting spherical surfaces. Phys. Fluids 2019, 31, 092102. [Google Scholar] [CrossRef]
- Khojasteh, D.; Bordbar, A.; Kamali, R.; Marengo, M. Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres. Int. J. Comut. Fluid Dyn. 2017, 31, 310–323. [Google Scholar] [CrossRef]
- Li, X.; Fu, Y.; Zheng, D.; Fang, H.; Wang, Y. A numerical study of droplet impact on solid spheres: The effect of surface wettability, sphere size, and initial impact velocity. Chem. Phys. 2021, 550, 111314. [Google Scholar] [CrossRef]
- Šikalo, Š.; Tropea, C.; Ganić, E.N. Impact of droplets onto inclined surfaces. J. Colloid Interface Sci. 2005, 286, 661–669. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Burton, J.; Loth, E.; Bayer, I.S. Drop Impact and Rebound Dynamics on an Inclined Superhydrophobic Surface. Langmuir 2014, 30, 12027–12038. [Google Scholar] [CrossRef]
- LeClear, S.; LeClear, J.; Abhijeet; Park, K.-C.; Choi, W. Drop impact on inclined superhydrophobic surfaces. J. Colloid Interface Sci. 2016, 461, 114–121. [Google Scholar] [CrossRef]
- Buksh, S.; Marengo, M.; Amirfazli, A. Impacting of droplets on moving surface and inclined surfaces. At. Sprays 2020, 30, 557–574. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Jadidi, M.; Tembely, M.; Esmail, N.; Dolatabadi, A. Concurrent Droplet Coalescence and Solidification on Surfaces With Various Wettabilities. J. Fluids Eng. 2015, 137, 071302. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Aili, A.; Zhang, T. Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Langmuir 2017, 33, 8574–8581. [Google Scholar] [CrossRef] [PubMed]
- Enright, R.; Miljkovic, N.; Sprittles, J.; Nolan, K.; Mitchell, R.; Wang, E.N. How Coalescing Droplets Jump. ACS Nano 2014, 8, 10352–10362. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Son, G. Numerical study of droplet impact and coalescence in a microline patterning process. Comput. Fluids 2011, 42, 26–36. [Google Scholar] [CrossRef]
- Zhang, F.H.; Thoraval, M.-J.; Thoroddsen, S.T.; Taborek, P. Partial coalescence from bubbles to drops. J. Fluid Mech. 2015, 782, 209–239. [Google Scholar] [CrossRef]
- Cheng, X.; Zhu, Y.; Zhang, L.; Wang, C.; Li, S. Lattice Boltzmann simulation of multiple droplets impingement and coalescence in an inkjet-printed line patterning process. Int. J. Comut. Fluid Dyn. 2017, 31, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Bhardwaj, R.; Sahu, K.C. Coalescence dynamics of a droplet on a sessile droplet. Phys. Fluids 2020, 32, 012104. [Google Scholar] [CrossRef]
- Visser, C.W.; Frommhold, P.E.; Wildeman, S.; Mettin, R.; Lohse, D.; Sun, C. Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 2015, 11, 1708–1722. [Google Scholar] [CrossRef] [Green Version]
- von Karman, T. The Impact on Seaplane Floats during Landing; National Advisory Committee on Aeronautics: Washington, DC, USA, 1929; NACA Tech. Note No. 321. [Google Scholar]
- Korobkin, A.A. Second-order Wagner theory of wave impact. J. Eng. Math. 2007, 58, 121–139. [Google Scholar] [CrossRef]
- Korobkin, A.A.; Pukhnachov, V. V Initial Stage of Water Impact. Annu. Rev. Fluid Mech. 1988, 20, 159–185. [Google Scholar] [CrossRef]
- Korobkin, A.A. Asymptotic theory of liquid–solid impact. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1997, 355, 507–522. [Google Scholar] [CrossRef]
- Korobkin, A.A.; Iafrati, A. Numerical study of jet flow generated by impact on weakly compressible liquid. Phys. Fluids 2006, 18, 032108. [Google Scholar] [CrossRef]
- Li, R.; Ninokata, H.; Mori, M. A numerical study of impact force caused by liquid droplet impingement onto a rigid wall. Prog. Nucl. Energy 2011, 53, 881–885. [Google Scholar] [CrossRef]
- Heymann, F.J. High-Speed Impact between a Liquid Drop and a Solid Surface. J. Appl. Phys. 1969, 40, 5113–5122. [Google Scholar] [CrossRef]
- Dear, J.P.; Field, J.E. High-speed photography of surface geometry effects in liquid/solid impact. J. Appl. Phys. 1988, 63, 1015–1021. [Google Scholar] [CrossRef]
- Lesser, M.B. Analytic solution of liquid-drop impact problems. Proc. R. Soc. London. A. Math. Phys. Sci. 1981, 377, 289–308. [Google Scholar] [CrossRef]
- Haller Knezevic, K. High-Velocity Impact of a Liquid Droplet on a Rigid Surface: The Effect of Liquid Compressibility. Doctoral Thesis, ETH Zurich, Zürich, Switzerland, 2002. [Google Scholar]
- Haller, K.K.; Poulikakos, D.; Ventikos, Y.; Monkewitz, P. Shock wave formation in droplet impact on a rigid surface: Lateral liquid motion and multiple wave structure in the contact line region. J. Fluid Mech. 2003, 490, 1–14. [Google Scholar] [CrossRef]
- Haller, K.K.; Ventikos, Y.; Poulikakos, D.; Monkewitz, P. Computational study of high-speed liquid droplet impact. J. Appl. Phys. 2002, 92, 2821–2828. [Google Scholar] [CrossRef]
- Marzbali, M.; Dolatabadi, A. High-speed Droplet Impingement in Compressible Regime. In Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering, Lisbon, Portugal, 15–17 August 2019. [Google Scholar]
- Marzbali, M.; Dolatabadi, A. 2D Axisymmetric Modelling of Single Liquid Droplet Impingement at High Speeds on Thin Liquid Films in Compressible Regime. In Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering, Prague, Czech Republic, 16–18 August 2020. [Google Scholar]
- Marzbali, M.; Dolatabadi, A. High-speed droplet impingement on dry and wetted substrates. Phys. Fluids 2020, 32, 112101. [Google Scholar] [CrossRef]
- Riboux, G.; Gordillo, J.M. Experiments of Drops Impacting a Smooth Solid Surface: A Model of the Critical Impact Speed for Drop Splashing. Phys. Rev. Lett. 2014, 113, 024507. [Google Scholar] [CrossRef]
- Riboux, G.; Gordillo, J.M. Boundary-layer effects in droplet splashing. Phys. Rev. E 2017, 96, 013105. [Google Scholar] [CrossRef] [PubMed]
- Rochester, M.C.; Brunton, J.H. Erosion by Liquid and Solid Impact. In Proceedings of the 5th International Conference on Erosion by Liquid and Solid Impact, Cambridge, UK, 3–6 September 1979. [Google Scholar]
- Soulard, L.; Durand, O.; Prat, R.; Carrard, T. High velocity impact of a spherical particle on a surface: Theory and simulation of the jet formation. J. Appl. Phys. 2021, 129, 205104. [Google Scholar] [CrossRef]
- Tretola, G.; Vogiatzaki, K. Unveiling the dynamics of ultra high velocity droplet impact on solid surfaces. Sci. Rep. 2022, 12, 7416. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.B.; Field, J.E. The Impact of Compressible Liquids. Annu. Rev. Fluid Mech. 1983, 15, 97–122. [Google Scholar] [CrossRef]
- Chizhov, A.V.; Takayama, K. The impact of compressible liquid droplet on hot rigid surface. Int. J. Heat Mass Transf. 2004, 47, 1391–1401. [Google Scholar] [CrossRef]
- Field, J.E.; Camus, J.-J.; Tinguely, M.; Obreschkow, D.; Farhat, M. Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 2012, 290–291, 154–160. [Google Scholar] [CrossRef]
- Sanada, T.; Watanabe, M.; Shirota, M.; Yamase, M.; Saito, T. Impact of high-speed steam-droplet spray on solid surface. Fluid Dyn. Res. 2008, 40, 627–636. [Google Scholar] [CrossRef]
- Betney, M.R.; Tully, B.; Hawker, N.A.; Ventikos, Y. Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid. Phys. Fluids 2015, 27, 036101. [Google Scholar] [CrossRef]
- Obreschkow, D.; Dorsaz, N.; Kobel, P.; de Bosset, A.; Tinguely, M.; Field, J.; Farhat, M. Confined shocks inside isolated liquid volumes: A new path of erosion? Phys. Fluids 2011, 23, 101702. [Google Scholar] [CrossRef]
- Kondo, T.; Ando, K. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact. Phys. Fluids 2016, 28, 033303. [Google Scholar] [CrossRef]
- Niu, Y.-Y.; Wang, H.-W. Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model. Comput. Fluids 2016, 134–135, 196–214. [Google Scholar] [CrossRef]
- Stavropoulos Vasilakis, E.; Kyriazis, N.; Koukouvinis, P.; Farhat, M.; Gavaises, M. Cavitation induction by projectile impacting on a water jet. Int. J. Multiph. Flow 2019, 114, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Liu, Q.; Wang, B. Curved surface effect on high-speed droplet impingement. J. Fluid Mech. 2021, 909, A7. [Google Scholar] [CrossRef]
- Howison, S.D.; Ockendon, J.R.; Oliver, J.M.; Purvis, R.; Smith, F.T. Droplet impact on a thin fluid layer. J. Fluid Mech. 2005, 542, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tretola, G.; Vogiatzaki, K. Numerical Treatment of the Interface in Two Phase Flows Using a Compressible Framework in OpenFOAM: Demonstration on a High Velocity Droplet Impact Case. Fluids 2021, 6, 78. [Google Scholar] [CrossRef]
- Sasaki, H.; Ochiai, N.; Iga, Y. Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement. Int. J. Fluid Mach. Syst. 2016, 9, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.S. Erosion by water-hammer. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 1928, 119, 481–488. [Google Scholar] [CrossRef]
- Honegger, E. Test on Erosion caused by Jets. Brown Boveri Rev. 1927, 14, 95–104. [Google Scholar]
- Engel, O.G. Waterdrop collisions with solid surfaces. J. Res. Natl. Bur. Stand. 1955, 54, 281–298. [Google Scholar] [CrossRef]
- Blowers, R.M. On the response of an elastic solid to droplet impact. IMA J. Appl. Math. Institute Math. Its Appl. 1969, 5, 167–193. [Google Scholar] [CrossRef]
- Adler, W.F. Waterdrop impact modeling. Wear 1995, 186–187, 341–351. [Google Scholar] [CrossRef]
- Huang, Y.C.; Hammitt, F.G.; Yang, W.-J. Hydrodynamic Phenomena During High-Speed Collision Between Liquid Droplet and Rigid Plane. J. Fluids Eng. 1973, 95, 276–292. [Google Scholar] [CrossRef]
- Li, N.; Zhou, Q.; Chen, X.; Xu, T.; Hui, S.; Zhang, D. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact. Int. J. Mech. Sci. 2008, 50, 1526–1542. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, N.; Chen, X.; Xu, T.; Hui, S.; Zhang, D. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part II: Axisymmetric solution and erosion analysis. Int. J. Mech. Sci. 2008, 50, 1543–1558. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, N.; Chen, X.; Xu, T.; Hui, S.; Zhang, D. Analysis of water drop erosion on turbine blades based on a nonlinear liquid–solid impact model. Int. J. Impact Eng. 2009, 36, 1156–1171. [Google Scholar] [CrossRef]
- Marzbali, M.; Dolatabadi, A.; Jedrzejowski, P. Fluid-Solid Interaction Modeling of Compressible Droplet Impact onto Elastic Substrates. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, Reston, VA, USA, 24 June 2013. [Google Scholar]
- Marzbali, M. Numerical Analysis of High-speed Droplet Impingement on Elastic and Rigid Substrates. Ph.D. Thesis, Concordia University, Montreal, ON, Canada, 2017. [Google Scholar]
- Marzbali, M.; Dolatabadi, A. Modeling of Liquid Droplet Impingement onto Ti-6Al-4V Substrate. In Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering, Lisbon, Portugal, 15–17 August 2019. [Google Scholar]
- Marzbali, M.; Dolatabadi, A. Flow Characterization of a Water Drop Impinged onto a Rigid Surface at a High Speed and Normal Angle in the Presence of Stagnant Air at Ambient Condition. J. Fluid Flow, Heat Mass Transf. 2020, 7, 92–104. [Google Scholar] [CrossRef]
- Xiong, J.; Koshizuka, S.; Sakai, M. Numerical Analysis of Droplet Impingement Using the Moving Particle Semi-implicit Method. J. Nucl. Sci. Technol. 2010, 47, 314–321. [Google Scholar] [CrossRef]
- Tatekura, Y.; Watanabe, M.; Kobayashi, K.; Sanada, T. Pressure generated at the instant of impact between a liquid droplet and solid surface. R. Soc. Open Sci. 2018, 5, 181101. [Google Scholar] [CrossRef] [Green Version]
- Gardner, F.W. The erosion of steam turbine blades. Eng. 1932, 153, 202–205. [Google Scholar]
- Saurel, R.; Abgrall, R. A Simple Method for Compressible Multifluid Flows. SIAM J. Sci. Comput. 1999, 21, 1115–1145. [Google Scholar] [CrossRef]
- Japan Society of Mechanical Engineers. Codes for Power Generation Facilities, Rules on Pipe WallThinning Management. JSME S CA1. 2005. Available online: https://www.jsme.or.jp/english/committees/codes-standards/jsme-codes-for-power-generation-facilities/ (accessed on 5 December 2022).
- Hattori, S.; Lin, G. Effect of droplet diameter on liquid impingement erosion. In Proceedings of the 7th International Symposium on Measurement Techniques for Multiphase Flows, Tianjin, China, 17–19 September 2011; Volume 1428, pp. 191–198. [Google Scholar]
- Adler, W. The mechanics of liquid impact. In Treatise on Materials Science and Technology, Vol. 16, Erosion; Preece, C.M., Ed.; Academic Press Inc.: New York, NY, USA, 1979; pp. 127–183. [Google Scholar]
- Field, J.E. ELSI Conference: Invited Lecture Liquid Impact: Theory, Experiment, Applications. Wear 1999, 233, 1–12. [Google Scholar] [CrossRef]
- Heymann, F. On the Time Dependence of the Rate of Erosion Due to Impingement or Cavitation. In Erosion by Cavitation or Impingement; ASTM International: West Conshohocken, PA, USA, 1967; pp. 70–110. [Google Scholar]
- Kennedy, C.F.; Field, J.E. Damage threshold velocities for liquid impact. J. Mater. Sci. 2000, 35, 5331–5339. [Google Scholar] [CrossRef]
- Thiruvengadam, A.; Rudy, S.; Gunasekaran, M. Experimental and Analytical Investigations on Liquid Impact Erosion. In Characterization and Determination of Erosion Resistance; ASTM International: West Conshohocken, PA, USA, 1970; pp. 249–280. [Google Scholar]
- Springer, G.S. Erosion by Liquid Impact; Scripta Publishing Co.: Washington, DC, USA, 1976. [Google Scholar]
- Slot, H.; Matthews, D.; Schipper, D.; van der Heide, E. Fatigue-based model for the droplet impingement erosion incubation period of metallic surfaces. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 199–211. [Google Scholar] [CrossRef]
- Rieger, H. The Damage to Metals on High Speed Impact with Water Droplets. In Proceedings of the First International Conference on Rain Erosion and Associated Phenomena, Meersburg, Germany, 5–7 May 1965. [Google Scholar]
- Hoff, G.; Langbein, G.; Rieger, H. Material Destruction Due to Liquid Impact. In Erosion by Cavitation or Impingement; ASTM International: West Conshohocken, PA, USA, 1967; pp. 42–69. [Google Scholar]
- Mahdipoor, M.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M. Water droplet erosion mechanism of nearly fully-lamellar gamma TiAl alloy. Mater. Des. 2016, 89, 1095–1106. [Google Scholar] [CrossRef]
- Kamkar, N.; Bridier, F.; Bocher, P.; Jedrzejowski, P. Water droplet erosion mechanisms in rolled Ti-6Al-4V. Wear 2013, 301, 442–448. [Google Scholar] [CrossRef]
- Morris, J.W.; Wahl, N.E. Rain Erosion Damage of Ductile Metals. In Proceedings of the Fourth International Conference on Rain Erosion and Associated Phenomena, Meersburg, Germany, 8–10 May 1974. [Google Scholar]
- Gujba, A.K.; Ren, Z.; Dong, Y.; Ye, C.; Medraj, M. Effect of ultrasonic nanocrystalline surface modification on the water droplet erosion performance of Ti6Al4V. Surf. Coatings Technol. 2016, 307, 157–170. [Google Scholar] [CrossRef]
- Ma, D.; Mostafa, A.; Kevorkov, D.; Jedrzejowski, P.; Pugh, M.; Medraj, M. Water impingement erosion of deep-rolled Ti64. Metals 2015, 5, 1462–1486. [Google Scholar] [CrossRef] [Green Version]
- Foldyna, J.; Klich, J.; Hlavacek, P.; Zelenak, M.; Scucka, J. Erosion of Metals by Pulsating Water Jet. Teh. Vjesn. Gaz. 2012, 19, 381–386. [Google Scholar]
- O’Carroll, A.; Hardiman, M.; Tobin, E.F.; Young, T.M. Correlation of the rain erosion performance of polymers to mechanical and surface properties measured using nanoindentation. Wear 2018, 412–413, 38–48. [Google Scholar] [CrossRef]
- Heymann, F.J. A survey of clues to the relationship between erosion rate and impact parameters. In Proceedings of the Second International Confernce of Rain Erosion and Associated Phenomena, Meersburg, Germany, 16–18 August 1967. [Google Scholar]
- Moore, M.A. The relationship between the abrasive wear resistance, hardness and microstructure of ferritic materials. Wear 1974, 28, 59–68. [Google Scholar] [CrossRef]
- Oka, Y.I.; Matsumura, M.; Kawabata, T. Relationship between surface hardness and erosion damage caused by solid particle impact. Wear 1993, 162–164, 688–695. [Google Scholar] [CrossRef]
- Richman, R.H.; McNaughton, W.P. Correlation of cavitation erosion behavior with mechanical properties of metals. Wear 1990, 140, 63–82. [Google Scholar] [CrossRef]
- Hammitt, F.G.; Heymann, F.J. Liquid-Erosion Failures. In Failure Analysis and Prevention, Metals Handbook, Vol. 10; American Society for Metals: Metals Park, OH, USA, 1975; pp. 160–167. [Google Scholar]
- Ahmad, M.; Schatz, M.; Casey, M.V. An empirical approach to predict droplet impact erosion in low-pressure stages of steam turbines. Wear 2018, 402–403, 57–63. [Google Scholar] [CrossRef]
- Hattori, S.; Itoh, T. Cavitation erosion resistance of plastics. Wear 2011, 271, 1103–1108. [Google Scholar] [CrossRef]
- Thiruvengadam, A. The Concept of Erosion Strength. In Erosion by Cavitation or Impingement; ASTM International: West Conshohocken, PA, USA, 1967; pp. 22–41. [Google Scholar]
- Bedkowski, W.; Gasiak, G.; Lachowicz, C.; Lichtarowicz, A.; Łagoda, T.; Macha, E. Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear 1999, 230, 201–209. [Google Scholar] [CrossRef]
- Brunton, J.H. A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion—High speed liquid impact. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1966, 260, 79–85. [Google Scholar] [CrossRef]
- Ruml, Z.; Straka, F. A new model for steam turbine blade materials erosion. Wear 1995, 186–187, 421–424. [Google Scholar] [CrossRef]
- Hobbs, J. Experience With a 20-kc Cavitation Erosion Test. In Erosion by Cavitation or Impingement; ASTM International: West Conshohocken, PA, USA, 1967; pp. 159–185. [Google Scholar]
- Hancox, N.L.; Brunton, J.H. The Erosion of Solids by the Repeated Impact of Liquid Drops. Philos. Trans. R. Soc. A 1966, 260, 121–139. [Google Scholar]
- Kirols, H.S.; Kevorkov, D.; Uihlein, A.; Medraj, M. The effect of initial surface roughness on water droplet erosion behaviour. Wear 2015, 342–343, 198–209. [Google Scholar] [CrossRef]
- Murray, R.E.; Beach, R.; Barnes, D.; Snowberg, D.; Berry, D.; Rooney, S.; Jenks, M.; Gage, B.; Boro, T.; Wallen, S.; et al. Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade. Renew. Energy 2021, 164, 1100–1107. [Google Scholar] [CrossRef]
- Srivastava, M.; Hloch, S.; Krejci, L.; Chattopadhyaya, S.; Gubeljak, N.; Milkovic, M. Utilizing the water hammer effect to enhance the mechanical properties of AISI 304 welded joints. Int. J. Adv. Manuf. Technol. 2022, 119, 2317–2328. [Google Scholar] [CrossRef]
- Schuerhoff, J.; Ghicov, A.; Sattler, K. Advanced Water Droplet Erosion Protection for Modern Low Pressure Steam Turbine Steel Blades. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition (GT2015): Volume 8: Microturbines, Turbochargers and Small Turbomachines, Steam Turbines, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Mann, B.S.; Arya, V.; Pant, B.K.; Agarwal, M. High Power Diode Laser Surface Treatment to Minimize Droplet Erosion of Low Pressure Steam Turbine Moving Blades. J. Mater. Eng. Perform. 2009, 18, 990–998. [Google Scholar] [CrossRef]
- Mann, B.S. Laser Treatment of Textured X20Cr13 Stainless Steel to Improve Water Droplet Erosion Resistance of LPST Blades and LP Bypass Valves. J. Mater. Eng. Perform. 2013, 22, 3699–3707. [Google Scholar] [CrossRef]
- Mahdipoor, M.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M. Water droplet erosion behaviour of gas nitrided Ti6Al4V. Surf. Coatings Technol. 2016, 292, 78–89. [Google Scholar] [CrossRef]
- Coulon, P.A.; Alsthom, G. Resistance to wear of nitriding on titanium alloy using the laser-irradiation technique. J. Mater. Process. Technol. 1993, 38, 247–263. [Google Scholar] [CrossRef]
- Kathuria, Y.P. Some aspects of laser surface cladding in the turbine industry. Surf. Coatings Technol. 2000, 132, 262–269. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Yuan, C.; Bai, X. Effect of corrosion on cavitation erosion behavior of HVOF sprayed cobalt-based coatings. Mater. Res. Express 2022, 9, 066402. [Google Scholar] [CrossRef]
- Di, J.; Wang, S.; Yan, X.; Jiang, X.; Lian, J.; Zhang, Z.; Xie, Y. Experimental Research on Water Droplet Erosion Resistance Characteristics of Turbine Blade Substrate and Strengthened Layers Materials. Materials 2020, 13, 4286. [Google Scholar] [CrossRef]
- Jingyong, S.; Yuliang, Y.; Bo, L.; Qijian, S.; Tianshu, X.; Qunli, Z.; Jianhua, Y. Comparative study on cavitation resistance and mechanism of supersonic laser deposition and laser cladding Stellite-6 coating. Chinese J. Lasers 2021, 48, 1002118. [Google Scholar] [CrossRef]
- Kołodziejczak, P.; Golański, D.; Chmielewski, T.; Chmielewski, M. Microstructure of Rhenium Doped Ni-Cr Deposits Produced by Laser Cladding. Materials 2021, 14, 2745. [Google Scholar] [CrossRef]
- Li, J.; Gong, S.; Wang, X.; Suo, H. Physical and surface performance of laser clad Ni based coating on a TA15-2 alloy. Zhongguo Jiguang/Chinese J. Lasers 2013, 40, 1103008. [Google Scholar] [CrossRef]
- Chen, C.; Meiping, W.; Rui, H.; Yuling, G.; Dadong, J.; Xiaojin, M. Effect of CeO 2 on the TiB 2 + TiC evolution and water droplet erosion resistance of laser-clad Ni60A coatings. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 353–366. [Google Scholar] [CrossRef]
- Tarasi, F.; Mahdipoor, M.S.; Dolatabadi, A.; Medraj, M.; Moreau, C. HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application. J. Therm. Spray Technol. 2016, 25, 1711–1723. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Xie, Y. Experimental study on water droplet erosion resistance of coatings (Ni60 and WC-17Co) sprayed by APS and HVOF. Wear 2019, 432–433, 202950. [Google Scholar] [CrossRef]
- Mann, B.S.; Arya, V. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades. Wear 2003, 254, 652–667. [Google Scholar] [CrossRef]
- Mahdipoor, M.S.; Tarasi, F.; Moreau, C.; Dolatabadi, A.; Medraj, M. HVOF sprayed coatings of nano-agglomerated tungsten-carbide/cobalt powders for water droplet erosion application. Wear 2015, 330–331, 338–347. [Google Scholar] [CrossRef]
- Gujba, A.K.; Mahdipoor, M.S.; Medraj, M. Water droplet impingement erosion performance of WC-based coating sprayed by HVAF and HVOF. Wear 2021, 484–485, 203904. [Google Scholar] [CrossRef]
- Hu, H.X.; Jiang, S.L.; Tao, Y.S.; Xiong, T.Y.; Zheng, Y.G. Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating. Nucl. Eng. Des. 2011, 241, 4929–4937. [Google Scholar] [CrossRef]
- Mednikov, A.F.; Tkhabisimov, A.B.; Sidorov, S.V.; Zilova, O.S.; Burmistrov, A.A. On improvement of erosion resistance of titanium parts fabricated by 3D printing using DLC coating. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2385–2390. [Google Scholar]
- Schmitt, G.F., Jr. Liquid and Solid Particle Impact Erosion; ADA080607; Defense Technical Information Center: Fort Belvoir, VA, USA, 1 November 1979; p. 82.
- Adler, W.F.; Morris, J.W., Jr.; Wahl, N.E.; Morris, J.W. Supersonic Rain and Sand Erosoin Research: Characterisation and Development of Erosion Resistant Materials; AD0900517; Defense Technical Information Center: Fort Belvoir, VA, USA, 1 May 1972; p. 300.
- Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T.M. Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications. Wind Energy 2022, 25, 1758–1774. [Google Scholar] [CrossRef]
- Pant, B.K.; Arya, V.; Mann, B.S. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components. J. Therm. Spray Technol. 2010, 19, 884–892. [Google Scholar] [CrossRef]
- Mann, B.S.; Arya, V.; Pant, B.K. Enhanced Erosion Protection of TWAS Coated Ti6Al4V Alloy Using Boride Bond Coat and Subsequent Laser Treatment. J. Mater. Eng. Perform. 2011, 20, 932–940. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zhou, H.; Huang, J.; Guo, Z. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale 2021, 13, 11734–11764. [Google Scholar] [CrossRef]
- Quan, Y.-Y.; Chen, Z.; Lai, Y.; Huang, Z.-S.; Li, H. Recent advances in fabricating durable superhydrophobic surfaces: A review in the aspects of structures and materials. Mater. Chem. Front. 2021, 5, 1655–1682. [Google Scholar] [CrossRef]
- Brown, S.; Lengaigne, J.; Sharifi, N.; Pugh, M.; Moreau, C.; Dolatabadi, A.; Martinu, L.; Klemberg-Sapieha, J.E. Durability of superhydrophobic duplex coating systems for aerospace applications. Surf. Coatings Technol. 2020, 401, 126249. [Google Scholar] [CrossRef]
Application (Component) | Materials | Impact Speed | Droplet Diameter | Ref(s) |
---|---|---|---|---|
Steam Turbine (Low-pressure stage blades) | Stainless Steels | 400–900 m/s | 50–400 µm | [20,21,24] |
Gas Turbine (Compressor blades) | Titanium Alloys (Ti-6Al-4V) | 100–800 m/s | 200–600 µm | [16] |
Wind turbine (Outer power-producing part) | Composite | 70–150 m/s | 0.5–5 mm | [34,35,36] |
Nuclear Power Plant (Cooling pipes) | Carbon Steels | 200 m/s | 60–80 µm | [37] |
Aero engine (Fan blade) | Titanium Alloys (Ti-6Al-4V) | 200–400 m/s | 1–5 mm | [25] |
Aircraft (Different parts) | Aluminum alloys | Civil airplanes∼250 m/s Fighter Jets∼up to 5 Mach | 1–5 mm | [27] |
Equation | Conditions | Author(s) | Year | Ref. |
---|---|---|---|---|
1D, rigid wall, constant speed of sound | Cook | 1928 | [191] | |
1D, elastic wall, constant speed of sound (l: liquid, s: solid) | Gardner | 1932 | [206] | |
Spherical droplet, rigid wall, α approaches unity for high impact velocities | Engel | 1955 | [193] | |
2D, rigid wall, variable speed of sound (k is liquid constant, = 2 for water) | Heymann | 1969 | [164] | |
1D, rigid wall, stiffened gas EOS (γ is a property of the material, = 1.4 for air, = 4.4 for water) | Saurel and Abgrall | 1999 | [207] | |
1D, rigid wall, variable speed of sound (k is a liquid constant) | JSME | 2005 | [208] | |
) | 2.5D *, rigid dry wall, variable speed of sound based on Tait’s EOS for water and ideal gas law for air | Marzbali and Dolatabadi | 2020 | [172] |
) | is liquid film thickness to droplet diameter ratio) | Marzbali and Dolatabadi | 2020 | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzbali, M.; Yeganehdoust, F.; Ibrahim, M.E.; Tarasi, F.; Jadidi, M. Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review. Coatings 2023, 13, 577. https://doi.org/10.3390/coatings13030577
Marzbali M, Yeganehdoust F, Ibrahim ME, Tarasi F, Jadidi M. Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review. Coatings. 2023; 13(3):577. https://doi.org/10.3390/coatings13030577
Chicago/Turabian StyleMarzbali, Mason, Firoozeh Yeganehdoust, Mohamed E. Ibrahim, Fariba Tarasi, and Mehdi Jadidi. 2023. "Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review" Coatings 13, no. 3: 577. https://doi.org/10.3390/coatings13030577
APA StyleMarzbali, M., Yeganehdoust, F., Ibrahim, M. E., Tarasi, F., & Jadidi, M. (2023). Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review. Coatings, 13(3), 577. https://doi.org/10.3390/coatings13030577