The Nature of Plasma Spraying
1. Introduction
2. On the Physics of Plasma Spraying
2.1. Characteristic Plasma Parameters
2.2. Electron–Gas Interaction
2.3. Plasma–Particle Interaction
ε = thermal emissivity
2.4. Particle–Substrate Interaction
2.5. Heat Transfer Instability: The Trouble with Nonlinearity
3. Selection of Plasma Spray Parameters
Statistical Control of Plasma Parameters
4. Design of Plasma-Sprayed Coatings
- -
- Properties and performance of plasma-sprayed coatings: corrosion, mechanical, tribological, catalytic, biomedical, and/or electric evaluation;
- -
- Plasma-assisted thin film deposition;
- -
- Plasma etching and surface engineering;
- -
- Plasma texturing of surfaces;
- -
- Plasma spray-derived gradient and multilayers;
- -
- Plasma functionalization of surfaces;
- -
- Plasma spray-derived nanoscale coatings.
5. Challenges and Outlook
Conflicts of Interest
References
- Frank-Kamenetskii, D.A. Plasma: The Fourth State of Matter; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Burm, K.T.A.L. Plasma: The fourth state of matter. Plasma Chem. Plasma Process. 2012, 32, 401–407. [Google Scholar] [CrossRef]
- Goldston, R.J.; Rutherford, P.H. Introduction to Plasma Physics; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Smy, P.R. The use of Langmuir probes in the study of high pressure plasmas. Adv. Phys. 1976, 25, 517–553. [Google Scholar] [CrossRef]
- Vardelle, A.; Vardelle, M.; Fauchais, P. Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings. Plasma Chem. Plasma Process. 1982, 2, 255–291. [Google Scholar] [CrossRef]
- Schoeneborn, P.R. The interaction between a single particle and oscillating fluid. J. Multiph. Flow 1975, 7, 307–317. [Google Scholar] [CrossRef]
- Heimann, R.B. Plasma Spray Coating. Principles and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Beard, K.V.; Pruppacher, H.R. A determination of the terminal velocity and drag of small water droplets by means of a wind tunnel. J. Atmos. Sci. 1969, 26, 1066–1072. [Google Scholar] [CrossRef]
- Fiszdon, J.K. Melting of powder particles in a plasma flame. Int. J. Heat Mass Transf. 1979, 10, 749–761. [Google Scholar] [CrossRef]
- Ranz, W.E.; Marshall, W.R. Evaporation form drops. Chem. Eng. Prog. 1952, 48, 141–146. [Google Scholar]
- Raithby, G.D.; Eckert, E.R. The effect of turbulence parameters and support position on the heat transfer from spheres. Int. J. Heat Mass Transf. 1968, 11, 1233–1252. [Google Scholar] [CrossRef]
- Chen, X.; Pfender, E. Heat transfer to a single particle exposed to a thermal plasma. Plasma Chem. Plasma Process. 1982, 2, 185–212. [Google Scholar] [CrossRef]
- Proulx, P.; Mostaghimi, J.; Boulos, M.I. Plasma-particle interaction effects in induction plasma modeling under dense loading conditions. Int. J. Heat Mass Transf. 1985, 28, 1327–1336. [Google Scholar] [CrossRef]
- Mostaghimi, J.; Proulx, P.; Boulos, M.I. An analysis of the computer modeling of the flow and temperature fields in an inductively coupled plasma. Int. J. Heat Mass Transf. 1985, 28, 187–201. [Google Scholar]
- Fauchais, P.; Vardelle, A. Heat, mass and momentum transfer in coating formation by plasma spraying. Int. J. Thermal Sci. 2000, 39, 852–870. [Google Scholar] [CrossRef]
- Golosnoy, O.; Tsipas, S.A.; Clyne, T.W. An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 2005, 14, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Mostaghimi, J.; Chandra, S. Heat transfer in plasma spray coating processes. Adv. Heat Transf. 2007, 40, 143–204. [Google Scholar]
- Madejski, J. Solidification of droplets on a cold surface. Int. J. Heat Mass Transf. 1976, 19, 1009–1013. [Google Scholar] [CrossRef]
- Trapaga, G.; Szekely, J. Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes. Metall. Mater. Trans. B 1991, 22, 901–914. [Google Scholar] [CrossRef]
- Dyshlovenko, S.; Pawlowski, L.; Pateyron, B.; Smurov, I.; Harding, J.H. Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite. Surf. Coat. Technol. 2006, 200, 3757–3769. [Google Scholar] [CrossRef]
- Kang, C.W.; Ng, H.W. Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process. Surf. Coat. Technol. 2006, 200, 5462–5477. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Self-affine fractals and fractal dimension. Phys. Scr. 1985, 32, 275. [Google Scholar] [CrossRef]
- Reisel, G.; Heimann, R.B. Correlation between surface roughness of plasma-sprayed chromium oxide coatings and powder grain size distribution: A fractal approach. Surf. Coat. Technol. 2004, 185, 215–221. [Google Scholar] [CrossRef]
- Heimann, R.B. On the self-affine fractal geometry of plasma-sprayed surfaces. J. Therm. Spray Technol. 2011, 20, 898–908. [Google Scholar] [CrossRef]
- Meakin, P.; Ramanlal, P.; Sander, L.M.; Ball, R.C. Ballistic deposition on surfaces. Phys. Rev. A 1986, 34, 5091. [Google Scholar] [CrossRef] [PubMed]
- Heimann, R.B.; Kleiman, J.I. Shock-induced growth of superhard materials. In Crystals. Growth, Properties, and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; London, UK; Paris, France; Tokyo, Japan, 1988; Volume 11, pp. 1–73. [Google Scholar]
- Houben, J.M. Relation of the Adhesion of Plasma Sprayed Coatings to the Process Parameters Size, Velocity and Heat Content of Spray Particles. Ph.D. Thesis, Technical University Eindhoven, Eindhoven, The Netherlands, 1988. [Google Scholar]
- Heimann, R.B. Advanced ceramic coatings by plasma spraying: A technology for the 1990s and beyond. Process. Adv. Mater. 1991, 1, 181. [Google Scholar]
- Gruner, H. Vacuum plasma spray quality control. Thin Solid Films 1984, 30, 409–420. [Google Scholar] [CrossRef]
- Kitahara, S.; Hasui, A. A study of the bonding mechanisms of sprayed coatings. J. Vac. Sci. Technol. 1974, 11, 747–755. [Google Scholar] [CrossRef]
- Thom, R. Structural Stability and Morphogenesis: An Outline of a General Theory of Models; W.A. Benjamin: Reading, MA, USA, 1975. [Google Scholar]
- Heimann, R.B. A discussion on the limits to coating reproducibility based on heat transfer instabilities. J. Therm. Spray Technol. 2019, 33, 327–332. [Google Scholar] [CrossRef]
- Troczynski, T.; Plamondon, M. Response surface methodology for optimization of plasma spraying. J. Therm. Spray Technol. 1992, 1, 293–300. [Google Scholar] [CrossRef]
- Heimann, R.B.; Lamy, D.; Sopkow, T. Optimization of vacuum plasma arc spray parameters of 88WC12Co alloy coatings using a statistical multifactorial design matrix. J. Can. Ceram. Soc. 1990, 59, 49–54. [Google Scholar]
- Heimann, R.B. Better quality control: Stochastic approaches to optimize properties and performance of plasma sprayed coatings. J. Therm. Spray Technol. 2010, 19, 765–778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heimann, R.B. The Nature of Plasma Spraying. Coatings 2023, 13, 622. https://doi.org/10.3390/coatings13030622
Heimann RB. The Nature of Plasma Spraying. Coatings. 2023; 13(3):622. https://doi.org/10.3390/coatings13030622
Chicago/Turabian StyleHeimann, Robert B. 2023. "The Nature of Plasma Spraying" Coatings 13, no. 3: 622. https://doi.org/10.3390/coatings13030622
APA StyleHeimann, R. B. (2023). The Nature of Plasma Spraying. Coatings, 13(3), 622. https://doi.org/10.3390/coatings13030622