Investigations and Applications in Advanced Materials Processing
Funding
Conflicts of Interest
References
- Zantye, P.B.; Kumar, A.; Sikder, A. Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R Rep. 2004, 45, 89–220. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Wang, F.; Di, W. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectron. Eng. 2003, 66, 438–444. [Google Scholar] [CrossRef]
- Oliaei, S.N.B.; Mukhtarkhanov, M.; Perveen, A. Technological Advances and Challenges in Chemical Mechanical Polishing. In Advances in Abrasive Based Machining and Finishing Processes; Das, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 235–253. [Google Scholar] [CrossRef]
- Kuo, H.-S.; Tsai, W.-T. Effects of alumina and hydrogen peroxide on the chemical-mechanical polishing of aluminum in phosphoric acid base slurry. Mater. Chem. Phys. 2001, 69, 53–61. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Z.; Guo, J.; Han, X.; Mu, Q.; Zhu, X. A novel chemical mechanical polishing slurry for yttrium aluminum garnet crystal. Appl. Surf. Sci. 2019, 496, 143601. [Google Scholar] [CrossRef]
- Dai, S.; Lei, H.; Fu, J. Self-assembly preparation of popcorn-like colloidal silica and its application on chemical mechanical polishing of zirconia ceramic. Ceram. Int. 2020, 46, 24225–24230. [Google Scholar] [CrossRef]
- Wen, J.; Ma, T.; Zhang, W.; van Duin, A.C.; Lu, X. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations. Comput. Mater. Sci. 2017, 131, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Manivannan, R.; Ramanathan, S. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives. Appl. Surf. Sci. 2009, 255, 3764–3768. [Google Scholar] [CrossRef]
- Gitis, N.; Mudhivarthi, R. Tribometrology of CMP Process. In Microelectronic Applications of Chemical Mechanical Planarization; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 81–121. [Google Scholar]
- Xie, W.; Zhang, Z.; Wang, L.; Cui, X.; Yu, S.; Su, H.; Wang, S. Chemical mechanical polishing of silicon wafers using developed uniformly dispersed colloidal silica in slurry. J. Manuf. Process. 2023, 90, 196–203. [Google Scholar] [CrossRef]
- Kim, N.-H.; Choi, M.-H.; Kim, S.-Y.; Chang, E.-G. Design of experiment (DOE) method considering interaction effect of process parameters for optimization of copper chemical mechanical polishing (CMP) process. Microelectron. Eng. 2006, 83, 506–512. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, W.; Zhang, L.; Liu, W.; Song, Z. Effect of mechanical process parameters on friction behavior and material removal during sapphire chemical mechanical polishing. Microelectron. Eng. 2011, 88, 3020–3023. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, J.; Zhang, X.; Lu, J.; Yan, Q. Tribological behavior of 6H–SiC wafers in different chemical mechanical polishing slurries. Wear 2021, 472, 203649. [Google Scholar] [CrossRef]
- Denoual, C.; Hild, F. A damage model for the dynamic fragmentation of brittle solids. Comput. Methods Appl. Mech. Eng. 2000, 183, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yan, K.; Zhou, J.; Zhu, Y.; Hong, J. High toughness Si3N4 ceramic composites synergistically toughened by multilayer graphene/β-Si3N4 whisker: Preparation and toughening mechanism investigation. J. Alloy. Compd. 2022, 921, 166183. [Google Scholar] [CrossRef]
- Li, Q.; Pan, Z.; Liang, J.; Zhang, Z.; Li, J.; Zhou, Y.; Sun, X. Ceramic composites toughened by vat photopolymerization 3D printing technology. J. Mater. Sci. Technol. 2023, 146, 42–48. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Ye, F.; Cheng, L.; Zhang, Y. High-temperature atomically laminated materials: The toughening components of ceramic matrix composites. Ceram. Int. 2022, 48, 32628–32648. [Google Scholar] [CrossRef]
- Sharma, N.; Biswas, K.; Jha, S.K. Dry sliding wear behaviour of metal toughened nanoceramics: A case study of aluminium-alumina nanocermets. Wear 2022, 502, 204389. [Google Scholar] [CrossRef]
- Sarker, S.; Mumu, H.T.; Amin, A.; Alam, Z.; Gafur, M. Impacts of inclusion of additives on physical, microstructural, and mechanical properties of Alumina and Zirconia toughened alumina (ZTA) ceramic composite: A review. Mater. Today Proc. 2022, 62, 2892–2918. [Google Scholar] [CrossRef]
- Miyazaki, H.; Yoshizawa, Y.-I.; Hirao, K.; Ohji, T.; Hyuga, H. Measurements of fracture toughness of ceramic thin plates through single-edge V-notch plate method. J. Eur. Ceram. Soc. 2016, 36, 4327–4331. [Google Scholar] [CrossRef]
- Roy, T.K. Estimation of fracture toughness in ZnO ceramics from indentation crack opening displacement measurements. Measurement 2019, 137, 588–594. [Google Scholar] [CrossRef]
- D’Andrea, L.; De Cet, A.; Gastaldi, D.; Baino, F.; Verné, E.; Vena, P. Estimation of elastic modulus, fracture toughness and strength of 47.5B-derived bioactive glass-ceramics for bone scaffold applications: A nanoindentation study. Mater. Lett. 2023, 335, 133783. [Google Scholar] [CrossRef]
- Bellin, F.; Dourfaye, A.; King, W.; Thigpen, M. The current state of PDC bit technology. World Oil 2010, 231, 67–71. [Google Scholar]
- Detournay, E.; Defourny, P. A phenomenological model for the drilling action of drag bits. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1992, 29, 13–23. [Google Scholar] [CrossRef]
- Rostamsowlat, I.; Akbari, B.; Evans, B. Analysis of rock cutting process with a blunt PDC cutter under different wear flat inclination angles. J. Pet. Sci. Eng. 2018, 171, 771–783. [Google Scholar] [CrossRef]
- Witt-Doerring, Y.; Pastusek, P.P.; Ashok, P.; van Oort, E. Quantifying PDC Bit Wear in Real-Time and Establishing an Effective Bit Pull Criterion Using Surface Sensors. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 21–23 September 2021. [Google Scholar] [CrossRef]
- Glowka, D.A.; Stone, C.M. Effects of Thermal and Mechanical Loading on PDC Bit Life. SPE Drill. Eng. 1986, 1, 201–214. [Google Scholar] [CrossRef]
- Sinor, L.A.; Powers, J.R.; Warren, T.M. The effect of PDC cutter density, back rake, size, and speed on performance. In Proceedings of the IADC/SPE Drilling Conference, Dallas, TE, USA, 3–6 March 1998; p. SPE-39306-MS. [Google Scholar]
- Yahiaoui, M.; Gerbaud, L.; Paris, J.-Y.; Denape, J.; Dourfaye, A. A study on PDC drill bits quality. Wear 2013, 298, 32–41. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q. Investigations and Applications in Advanced Materials Processing. Coatings 2023, 13, 631. https://doi.org/10.3390/coatings13030631
Yao Q. Investigations and Applications in Advanced Materials Processing. Coatings. 2023; 13(3):631. https://doi.org/10.3390/coatings13030631
Chicago/Turabian StyleYao, Qingyu. 2023. "Investigations and Applications in Advanced Materials Processing" Coatings 13, no. 3: 631. https://doi.org/10.3390/coatings13030631
APA StyleYao, Q. (2023). Investigations and Applications in Advanced Materials Processing. Coatings, 13(3), 631. https://doi.org/10.3390/coatings13030631