Cleaning Effect of Atmospheric-Plasma-Sprayed Y2O3 Coating Using Piranha Solution Based on Contamination Particle Measurement
Abstract
:1. Introduction
2. Experimental
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coburn, J.W.; Winters, H.F. Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 1979, 16, 391–403. [Google Scholar] [CrossRef]
- Donnelly, V.M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 2013, 31, 050825. [Google Scholar] [CrossRef] [Green Version]
- Ito, N.; Moriya, T.; Uesugi, F.; Matsumoto, M.; Liu, S.; Kitayama, Y. Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall. Jpn. J. Appl. Phys. 2008, 47, 3630–3634. [Google Scholar] [CrossRef]
- Kasashima, Y.; Nabeoka, N.; Motomura, T.; Uesugi, F. Many flaked particles caused by impulsive force of electric field stress and effect of electrostriction stress in mass-production plasma etching equipment. Jpn. J. Appl. Phys. 2014, 53. [Google Scholar] [CrossRef]
- Mun, S.Y.; Shin, K.C.; Lee, S.S.; Kwak, J.S.; Jeong, J.Y.; Jeong, Y.H. Etch defect reduction using SF6/O2 plasma cleaning and optimizing etching recipe in photo resist masked gate poly silicon etch process. Jpn. J. Appl. Phys. 2005, 44. [Google Scholar] [CrossRef]
- So, J.; Choi, E.; Kim, J.-T.; Shin, J.-S.; Song, J.-B.; Kim, M.; Chung, C.-W.; Yun, J.-Y. Improvement of plasma resistance of anodic aluminum-oxide film in sulfuric acid containing Cerium(IV) ion. Coatings 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Choi, E.; So, J.; Shin, J.-S.; Chung, C.-W.; Maeng, S.-J.; Yun, J.-Y. Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature. J. Mater. Res. Technol. 2020, 11, 219–226. [Google Scholar] [CrossRef]
- Song, J.-B.; Kim, J.-T.; Oh, S.-G.; Yun, J.-Y. Contamination particles and plasma etching behavior of atmospheric plasma sprayed Y2O3 and YF3 coatings under NF3 plasma. Coatings 2019, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Deposited, Y.O.; Coatings, Y.F. Contamination particle behavior of aerosol. Coatings 2019, 9, 310. [Google Scholar]
- Kim, M.; Choi, E.; Lee, D.; Seo, J.; Back, T.-S.; So, J.; Yun, J.-Y.; Suh, S.-M. The effect of powder particle size on the corrosion behavior of atmospheric plasma spray-Y2O3 coating: Unraveling the corrosion mechanism by fluorine-based plasma. Appl. Surf. Sci. 2022, 606, 154958. [Google Scholar] [CrossRef]
- Ahmed, R.; Faisal, N.; Reuben, R.L.; Paradowska, A.M.; Fitzpatrick, M.; Kitamura, J.; Osawa, S. Neutron diffraction residual strain measurements in alumina coatings deposited via APS and HVOF techniques. J. Phys. Conf. Ser. 2010, 251, 012051. [Google Scholar] [CrossRef]
- Lee, J.-K.; Park, S.-J.; Oh, Y.-S.; Kim, S.; Kim, H.; Lee, S.-M. Fragmentation behavior of Y2O3 suspension in axially fed suspension plasma spray. Surf. Coat. Technol. 2017, 309, 456–461. [Google Scholar] [CrossRef]
- Barve, S.; Jagannath; Mithal, N.; Deo, M.; Chand, N.; Bhanage, B.; Gantayet, L.; Patil, D. Microwave ECR plasma CVD of cubic Y2O3 coatings and their characterization. Surf. Coat. Technol. 2010, 204, 3167–3172. [Google Scholar] [CrossRef]
- Shin, J.-S.; Kim, M.; Song, J.-B.; Jeong, N.-G.; Kim, J.-T.; Yun, J.-Y. Fluorine Plasma Corrosion Resistance of Anodic Oxide Film Depending on Electrolyte Temperature. Appl. Sci. Converg. Technol. 2018, 27, 9–13. [Google Scholar] [CrossRef]
- Shin, J.-S.; Song, J.-B.; Choi, S.-H.; Kim, J.-T.; Oh, S.-G.; Yun, J.-Y. Plasma Corrosion in Oxalic Acid Anodized Coatings Depending on Tartaric Acid Content. Appl. Sci. Converg. Technol. 2016, 25, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.; Panchal, H. A review on thermal spray coating processes. Int. J. Curr. Trends Eng. Technol. 2016, 2, 556–563. [Google Scholar]
- Hwang, Y.-J.; Kim, K.-W.; Lee, H.-Y.; Kwon, S.-C.; Lee, K.A. Effect of spray angle the on microstructure and mechanical properties of Y2O3 coating layer manufactured by atmospheric plasma spray process. J. Korean Powder Met. Inst. 2021, 28, 310–316. [Google Scholar] [CrossRef]
- Ma, T.; List, T.; Donnelly, V.M. Comparisons of NF3 plasma-cleaned Y2O3, YOF, and YF3 chamber coatings during silicon etching in Cl2 plasmas. J. Vac. Sci. Technol. A 2018, 36, 031305. [Google Scholar] [CrossRef]
- Lee, H.-K.; Lee, S.; Kim, B.-R.; Park, T.-E.; Yun, Y.-H. Microstructure and plasma resistance of Y2O3 ceramics. J. Korean Cryst. Growth Cryst. Technol. 2014, 24, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Kim, M.; So, J.; Shin, J. A study on plasma corrosion resistance and cleaning process of yttrium-based materials using atmospheric plasma spray coating. J. Semicond. Disp. Technol. 2022, 21, 74–79. [Google Scholar]
- Chen, S.; Sheng, B.; Xu, X.; Fu, S. Wet-cleaning of contaminants on the surface of multilayer dielectric pulse compressor gratings by the piranha solution. In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies; SPIE: Dalian, China, 2010; Volume 7655, pp. 489–495. [Google Scholar]
- Sirghi, L.; Kylián, O.; Gilliland, D.; Ceccone, G.; Rossi, F. Cleaning and hydrophilization of atomic force microscopy silicon probes. J. Phys. Chem. B 2006, 110, 25975–25981. [Google Scholar] [CrossRef] [PubMed]
- Joyce, R.; Singh, K.; Varghese, S.; Akhtar, J. Effective cleaning process and its influence on surface roughness in anodic bonding for semiconductor device packaging. Mater. Sci. Semicond. Process. 2015, 31, 84–93. [Google Scholar] [CrossRef]
- Lo, Y.-S.; Huefner, N.D.; Chan, W.S.; Dryden, P.; Hagenhoff, B.; Beebe, T.P. Organic and inorganic contamination on commercial afm cantilevers. Langmuir 1999, 15, 6522–6526. [Google Scholar] [CrossRef]
Plasma Etching Parameters | |
---|---|
Gas | CF4/O2/Ar 20, 5, 15 sccm |
Working pressure | 250–262 mTorr |
Power | 200 W |
Etch time | 60 min |
Piranha Solution Ratio | ||
---|---|---|
H2SO4 + H2O2 | 2:1 | 40 mL, 20 mL |
3:1 | 45 mL, 15 mL | |
4:1 | 48 mL, 12 mL | |
5:1 | 50 mL, 10 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.; Kim, M.; So, J.; Maeng, S.; Shin, J.-S.; Yun, J.-Y. Cleaning Effect of Atmospheric-Plasma-Sprayed Y2O3 Coating Using Piranha Solution Based on Contamination Particle Measurement. Coatings 2023, 13, 653. https://doi.org/10.3390/coatings13030653
Kwon H, Kim M, So J, Maeng S, Shin J-S, Yun J-Y. Cleaning Effect of Atmospheric-Plasma-Sprayed Y2O3 Coating Using Piranha Solution Based on Contamination Particle Measurement. Coatings. 2023; 13(3):653. https://doi.org/10.3390/coatings13030653
Chicago/Turabian StyleKwon, Hyuksung, Minjoong Kim, Jongho So, Seonjeong Maeng, Jae-Soo Shin, and Ju-Young Yun. 2023. "Cleaning Effect of Atmospheric-Plasma-Sprayed Y2O3 Coating Using Piranha Solution Based on Contamination Particle Measurement" Coatings 13, no. 3: 653. https://doi.org/10.3390/coatings13030653
APA StyleKwon, H., Kim, M., So, J., Maeng, S., Shin, J. -S., & Yun, J. -Y. (2023). Cleaning Effect of Atmospheric-Plasma-Sprayed Y2O3 Coating Using Piranha Solution Based on Contamination Particle Measurement. Coatings, 13(3), 653. https://doi.org/10.3390/coatings13030653