Composite High-k Films Based on Polyethylene Filled with Electric Arc Furnace Dust and MWCNT with Permittivity Synergetic Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EAFD Reduction
2.3. Methods
3. Results and Discussion
3.1. Dielectric Properties
3.2. Synergistic Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stathopoulos, V.N.; Papandreou, B.; Kanellopoulou, D.; Stournaras, C.J. Structural ceramics containing electric arc furnace dust. J. Hazard. Mater. 2013, 262, 91–99. [Google Scholar] [CrossRef]
- Arnold, M.C.; de Vargas, A.S.; Bianchini, L. Study of electric-arc furnace dust (EAFD) in fly ash and rice husk ash-based geopolymers. Adv. Powder Technol. 2017, 28, 2023–2034. [Google Scholar] [CrossRef]
- Sofilic, T.; Rastovcan-Mioc, A.; Cerjan-Stefanovic, Š.; Novosel-Radovic, V.; Jenko, M. Characterization of steel mill electric-arc furnace dust. J. Hazard. Mater. 2004, 109, 59–70. [Google Scholar] [CrossRef]
- de Vargas, A.S.; Masuero, Â.B.; Vilela, A.C.F. Investigations on the use of electric-arc furnace dust (EAFD) in Pozzolan-modified Portland cement I (MP) pastes. Cem. Concr. Res. 2006, 30, 1833–1841. [Google Scholar] [CrossRef]
- Brandner, U.; Antrekowitsch, J.; Leuchtenmueller, M. A review on the fundamentals of hydrogen-based reduction and recycling concepts for electric arc furnace dust extended by a novel conceptualization. Int. J. Hydrogen Energy 2021, 46, 31894–31902. [Google Scholar] [CrossRef]
- Fares, G.; Al-Zaid, R.Z.; Fauzi, A.; Alhozaimy, A.M.; Al-Negheimish, A.I.; Khan, M.I. Performance of optimized electric arc furnace dust-based cementitious matrix compared to conventional supplementary cementitious materials. Constr. Build. Mater. 2016, 112, 210–221. [Google Scholar] [CrossRef]
- Sayadi, M.; Hesami, S. Performance evaluation of using electric arc furnace dust in asphalt binder. J. Clean. Prod. 2017, 143, 1260–1267. [Google Scholar] [CrossRef]
- Karayannis, V.G. Development of extruded and fired bricks with steel industry byproduct towards circular economy. J. Build. Eng. 2016, 7, 382–387. [Google Scholar] [CrossRef]
- Silva, V.S.; Silva, J.S.; dos Costa, B.S.; Labes, C.; Oliveira, R.M.P.B. Preparation of glaze using electric-arc furnace dust as raw material. J. Mater. Res. Technol. 2019, 8, 5504–5514. [Google Scholar] [CrossRef]
- Lee, J.-H.; Han, K.-S.; Hwang, K.-T.; Kim, J.-H. Recycling of steelmaking electric arc furnace dust into aqueous cyan ceramic ink for inkjet printing process and its printability. Ceram. Int. 2021, 47, 16964–16971. [Google Scholar] [CrossRef]
- Seh-Bardan, B.J.; Sadegh-Zadeh, F.; Seh-Bardan, E.J.; Wahid, S.A. Effects of Electric-Arc Furnace Dust Application on Soil Properties, Sorghum Growth, and Heavy-Metal Accumulation. Commun Soil Sci. Plant Anal. 2013, 44, 1674–1683. [Google Scholar] [CrossRef]
- Frilund, C.; Kotilainen, M.; Barros Lorenzo, J.; Lintunen, P.; Kaunisto, K. Steel manufacturing EAF dust as a potential adsorbent for hydrogen sulfide removal. Energy Fuels 2022, 36, 3695–3703. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.N.; Rajadurai, A.; Muthuramalingam, T. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite. Mater. Res. Express. 2018, 5, 045303. [Google Scholar] [CrossRef]
- Kumar, P.N.; Rajadurai, A.; Muthuramalingam, T. Multi-response optimization on mechanical properties of silica fly ash filled polyester composites using taguchi-grey relational analysis. Silicon 2018, 10, 1723–1729. [Google Scholar] [CrossRef]
- Gamea, E.G.; Anwar, A.; Ezzat, A.A.; El-Rafey, M.E. Utilization of electric arc furnace dust as a filler for unsaturated polyester resin. Process. Saf. Environ. Prot. 2022, 159, 1194–1202. [Google Scholar] [CrossRef]
- Niubó, M.; Fernández, A.I.; Haurie, L.; Capdevila, X.G.; Chimenos, J.M.; Velasco, J.I. Influence of the Electric Arc Furnace Dust in the physical and mechanical properties of EVA–polyethylene–butene blends. Mater. Sci. Eng. A 2011, 528, 4437–4444. [Google Scholar] [CrossRef]
- Barreneche, C.; Fernández, A.I.; Niubó, M.; Chimenos, J.M.; Espiell, F.; Segarra, M.; Solé, C.; Cabeza, L.F. Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings. Energy Build. 2013, 61, 210–214. [Google Scholar] [CrossRef]
- Barreneche, C.; Navarro, M.E.; Niubó, M.; Cabeza, L.F.; Fernández, A.I. Use of PCM–polymer composite dense sheet including EAFD in constructive systems. Energy Build. 2014, 68, 1–6. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Majid, A.M.Z.; Wahid, M.A.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sust. Energ. Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Koleva, M. Strength characteristics of polymer composites with waste dust from power production. In Proceedings of the International Scientific Conference UNITEH, Gabrovo, Bulgaria, 23–24 November 2007. [Google Scholar]
- Cheng, Y.; Yu, G.; Duan, Z. Effect of Cooling Medium on LDPE Dielectric Properties. Polymers 2022, 14, 425. [Google Scholar] [CrossRef]
- Dao, N.L.; Lewin, P.L.; Hosier, I.L.; Swingler, S.G. A comparison between LDPE and HDPE cable insulation properties following lightning impulse ageing. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010. [Google Scholar]
- Pleşa, I.; Noţingher, P.V.; Stancu, C.; Wiesbrock, F.; Schlögl, S. Polyethylene nanocomposites for power cable insulations. Polymers 2018, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-I.; Jeong, W.-H.; Dinh, M.-C.; Yu, I.-K.; Park, M. Comparative Analysis of XLPE and Thermoplastic Insulation-Based HVDC Power Cables. Energies 2023, 16, 167. [Google Scholar] [CrossRef]
- Sharma, J.; Chand, N.; Bapat, M.N. Effect of cenosphere on dielectric properties of low density polyethylene. Results Phys. 2012, 2, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Vikulova, M.; Nikityuk, T.; Artyukhov, D.; Tsyganov, A.; Bainyashev, A.; Burmistrov, I.; Gorshkov, N. High-k Three-Phase Epoxy/K1.6(Ni0.8Ti7.2)O16/CNT Composites with Synergetic Effect. Polymers 2022, 14, 448. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Boychenko, E.; Burmistrov, I.; Gorshkov, N. Permittivity and Dielectric Loss Balance of PVDF/K1.6Fe1.6Ti6.4O16/MWCNT Three-Phase Composites. Polymers 2022, 14, 4609. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Gorshkov, N. Carbon Modification of K1.6Fe1.6Ti6.4O16 Nanoparticles to Optimize the Dielectric Properties of PTFE-Based Composites. Polymers 2022, 14, 4010. [Google Scholar] [CrossRef]
- Schumacher, B.; Geßwein, H.; Haußelt, J.; Hanemann, T. Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer based composites. Microelectron. Eng. 2010, 87, 1978–1983. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Tummala, R.R. Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci. Mater. Electron. 2000, 11, 253–268. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yu, Y.-F.; Xu, H.-P.; Bai, J. Study on Microstructure and Dielectric Property of the BaTiO3/Epoxy Resin Composites. Compos. Sci. Technol. 2008, 68, 171–177. [Google Scholar] [CrossRef]
- Kakimoto, M.; Takahashi, A.; Tsurumi, T.; Hao, J.; Li, L.; Kikuchi, R.; Miwa, T.; Oono, T.; Yamada, S. Polymer-ceramic nanocomposites based on new concepts for embedded capacitor. Mater. Sci. Eng. B 2006, 132, 74–78. [Google Scholar] [CrossRef]
- Rahaman, M.; Thomas, S.P.; Hussein, I.A.; De, S.K. Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym. Compos. 2013, 34, 494–499. [Google Scholar] [CrossRef]
- Sabet, M.; Soleimani, H. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 2014, 64, 012001. [Google Scholar] [CrossRef]
- Liang, G.D.; Tjong, S.C. Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater. Chem. Phys. 2006, 100, 132–137. [Google Scholar] [CrossRef]
Element | Fe | O | C | Ca | Mg | Mn | Si | Zn | Na | Cl | K | Al | Cr | P | Pb | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass fraction, % | Native | 34.4 | 28.4 | 5.2 | 2.1 | 0.8 | 2.5 | 1.2 | 17.5 | 3.0 | 2.0 | 1.1 | 0.3 | 0.2 | 0.2 | 1.1 | 0.5 |
Reduced | 56.5 | 23.5 | 7.4 | 6.2 | 1.2 | 3.8 | 1.8 | <0.1 |
Component Content, wt.%/vol.% | The Dielectric Properties | ||||
---|---|---|---|---|---|
LDPE | Native Dust (≈Fe2O3) | Reduced Dust (≈Fe0/Fe2O3) | MWCNT (Taunit-M) | ε (1 kHz) | tan(δ) (1 kHz) |
100 | - | - | - | 2.4 | 0.0013 |
- | 100 | - | - | 54.6 | 0.2784 |
81.25/96.09 | 18.75/3.91 | - | - | 2.9 | 0.0012 |
62.5/90.43 | 37.5/9.57 | - | - | 4.5 | 0.0046 |
25/65.38 | 75/34.62 | - | - | 9.9 | 0.0251 |
81/95.92 | 18.75/3.92 | - | 0.25/0.16 | 2.6 | 0.0026 |
62.25/90.22 | 37.5/9.59 | - | 0.25/0.19 | 3.3 | 0.0057 |
24.75/64.93 | 75/34.72 | - | 0.25/0.35 | 12.6 | 0.0403 |
- | - | 100 | - | ≈103 | |
81.25/97.41 | - | 18.75/2.59 | - | 3.2 | 0.0113 |
62.5/93.53 | - | 37.5/6.47 | - | 3.5 | 0.0024 |
25/74.29 | - | 75/25.71 | - | 10.7 | 0.0262 |
81/97.24 | - | 18.75/2.60 | 0.25/0.16 | 3.3 | 0.0015 |
62.25/93.32 | - | 37.5/6.49 | 0.25/0.20 | 3.7 | 0.0038 |
24.75/73.80 | - | 75/25.80 | 0.25/0.39 | 13.5 | 0.0380 |
99.75/99.87 | - | - | 0.25/0.13 | 2.9 | 0.0013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burmistrov, I.; Kiselev, N.; Khaydarov, T.; Khaydarov, B.; Kolesnikov, E.; Ovchinnikov, V.; Volnyanko, E.; Suyasova, M.; Vikulova, M.; Gorshkov, N.; et al. Composite High-k Films Based on Polyethylene Filled with Electric Arc Furnace Dust and MWCNT with Permittivity Synergetic Effect. Coatings 2023, 13, 672. https://doi.org/10.3390/coatings13040672
Burmistrov I, Kiselev N, Khaydarov T, Khaydarov B, Kolesnikov E, Ovchinnikov V, Volnyanko E, Suyasova M, Vikulova M, Gorshkov N, et al. Composite High-k Films Based on Polyethylene Filled with Electric Arc Furnace Dust and MWCNT with Permittivity Synergetic Effect. Coatings. 2023; 13(4):672. https://doi.org/10.3390/coatings13040672
Chicago/Turabian StyleBurmistrov, Igor, Nikolay Kiselev, Timur Khaydarov, Bekzod Khaydarov, Evgeny Kolesnikov, Vasily Ovchinnikov, Elena Volnyanko, Marina Suyasova, Maria Vikulova, Nikolay Gorshkov, and et al. 2023. "Composite High-k Films Based on Polyethylene Filled with Electric Arc Furnace Dust and MWCNT with Permittivity Synergetic Effect" Coatings 13, no. 4: 672. https://doi.org/10.3390/coatings13040672
APA StyleBurmistrov, I., Kiselev, N., Khaydarov, T., Khaydarov, B., Kolesnikov, E., Ovchinnikov, V., Volnyanko, E., Suyasova, M., Vikulova, M., Gorshkov, N., Kuznetsov, D., & Offor, P. O. (2023). Composite High-k Films Based on Polyethylene Filled with Electric Arc Furnace Dust and MWCNT with Permittivity Synergetic Effect. Coatings, 13(4), 672. https://doi.org/10.3390/coatings13040672