Study of Structural, Mechanical, and Corrosion Resistance of a Nanocomposite CrSiN/CrN/Cr Coating Deposited on AZ31: Effects of Deposition Time
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
3.3. Corrosion Behavior
4. Conclusions
- (1)
- The CrSiN coating is a composite structure consisting of amorphous and nanocrystalline CrN. The thickness has little effect on phase structure, grain size, and plane index, but the internal stress of the coating increases with increasing thickness.
- (2)
- With the increase in deposition time, the surface becomes smooth, the defects decrease, and the coating is well combined with the substrate.
- (3)
- With the increase in deposition time, the hardness and elastic modulus of the coating increase, and the coating has good mechanical properties. The adhesion between the coating and the substrate increases. When the deposition time is 65 min, the binding force between the coating and the substrate reaches the maximum, and the corresponding thickness of the CrSiN layer is 0.85 μm.
- (4)
- With the increase in deposition time, the corrosion potential increases, the corrosion current density, and the corrosion rate decrease, the protection rate increases, and the corrosion resistance of the coating improve. The corrosion resistance of the coating is best with a sputtering time of 65 min. In summary, the optimal sputtering time for the composite Cr/CrN/CrSiN coating in this work is 65 min; however, due to the limited time, only the coatings with a deposition time of 65 min (thickness about 2.2 μm) are represented in this work. The microstructure, corrosion, and wear resistance of the coatings with a thickness of 2~5 μm will be the main work of our next research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.T.; Wang, Q.; Zhuang, M.H.; Wu, J.J. Characterization and residual stress analysis of TiN/TiCN films on AZ31 magnesium alloy by PVD. Vacuum 2015, 112, 66–69. [Google Scholar] [CrossRef]
- Li, H.T.; Sun, P.F.; Zhu, Y.C.; Zhu, M.Z.; Wang, Q. Influence of C2H2 flows on microstructure and corrosion resistance of TiCN films doped with carbon atoms. Coatings 2018, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Sun, P.F.; Cheng, D.H.; Liu, Z.M. Effects of deposition temperature on structure, residual stress and corrosion behavior of Cr/TiN/Ti/TiN films. Ceram. Int. 2021, 47, 34909–34917. [Google Scholar] [CrossRef]
- Wu, G.S.; Wang, X.M.; Ding, K.J.; Zhou, Y.Y.; Zeng, X.Q. Corrosion behavior of Ti-Al-N/Ti-Al duplex coating on AZ31 magnesium alloy in NaCl aqueous solution. Mater. Charact. 2009, 60, 803–807. [Google Scholar] [CrossRef]
- Cai, F.; Zhang, J.; Wang, J.; Zheng, J.; Wang, Q.; Zhang, S. Improved adhesion and erosion wear performance of CrSiN/Cr multi-layer coatings on Ti alloy by inserting ductile Cr layers. Tribol. Int. 2021, 153, 106657. [Google Scholar] [CrossRef]
- Shao, T.; Ge, F.; Dong, Y.; Li, K.; Li, P.; Sun, D.; Huang, F. Microstructural effect on the tribo-corrosion behaviors of magnetron sputtered CrSiN coatings. Wear 2018, 416, 44–53. [Google Scholar] [CrossRef]
- Ge, F.; Shao, T.; Jia, C.; Li, P.; Huang, F. Tribological behaviors of a magnetron sputtered CrSiN coatings under ambient air and wet environments. Surf. Technol. 2017, 332, 304–311. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Ding, Y.S.; Zhou, F.; Kong, J.Z. Comparison of mechanical and tribological properties of Ni-CrSiN and Cu-CrSiN coatings via thermal-cold cycling treatment. Surf. Coat. Technol. 2020, 400, 126232. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Zhou, F.; Zhang, M.D. The enhancement of individual friction and corrosion properties of CrSiN coatings by Mo doping in seawater. Surf. Coat. Technol. 2022, 432, 128069. [Google Scholar] [CrossRef]
- Sveen, S.; Andersson, J.; M’Saoubi, R.; Olsson, M. Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates. Wear 2013, 308, 133–141. [Google Scholar] [CrossRef]
- Capote, G.; Silva, G.F.; Trava-Airoldi, V.J. Effect of hexane precursor diluted with argon on the adherent diamond-like properties of carbon films on steel surfaces. Thin Solid Film. 2015, 589, 286–291. [Google Scholar] [CrossRef]
- Li, H.T.; Sun, P.F.; Cheng, D.H. Structure and properties of a-C:H:Si:O films deposited by cage-like hollow cathode discharge on AZ31 alloy. Tribol. Int. 2022, 175, 107848. [Google Scholar] [CrossRef]
- Wang, W.L.; Yu, L.H.; Xu, J.H. Preparation of CrSiN-Ag films and evaluation of their properties. Mater. Prot. 2018, 51, 12–17. (In Chinese) [Google Scholar]
- Li, H.T.; Sun, P.F.; Cheng, D.H. Structure and properties of DLC films deposited on Mg alloy at different C2H2 flows of magnetron sputtering process. Coatings 2021, 11, 815. [Google Scholar] [CrossRef]
- Xu, F.M.; Luo, L.; Xiong, L.; Liu, Y. Microstructure and corrosion behavior of ALD Al2O3 film on AZ31 magnesium alloy with different surface roughness. J. Magnes. Alloy. 2020, 8, 480–492. [Google Scholar] [CrossRef]
- Zhu, L.-H.; Song, C.; NI, W.-Y.; Liu, Y.-X. Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings. Trans. Nonferrous Met. Soc. China 2016, 26, 1638–1646. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Zhang, H.; Zhang, X. Friction and wear behavior of CrSiN coatings deposited by plasma enhanced magnetron sputtering. Surf. Technol. 2020, 49, 185–191. (In Chinese) [Google Scholar]
- Chinh, N.Q.; Olasz, D.; Ahmed, A.Q.; Sáfrán, G.; Lendvai, J.; Langdon, T.G. Modification of the Hall-Petch relationship for submicron-grained fcc metals. Mater. Sci. Eng. A 2023, 862, 144419. [Google Scholar] [CrossRef]
- Su, K.; Liu, D.M.; Shao, T.M. Microstructure and mechanical properties of TiAlSiN nano-composite coatings deposited by ion beam assisted deposition. Sci. China 2015, 58, 1682–1688. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Chen, Q.; Huang, B.; Zhang, E.; Zhou, Q.; Zheng, G. Properties and milling performance of AlTiN and TiAlSiN coatings prepared by cathodic arc. China Ceram. 2019, 55, 29–35. (In Chinese) [Google Scholar]
- Daghbouj, N.; Sen, H.; Callisti, M.; Vronka, M.; Karlik, M.; Duchoň, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing nanoscale strain mechanisms in ion-irradiated multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Callisti, M.; Sen, H.S.; Karlik, M.; Polcar, T. Microstructural evolution of helium-irradiated 6H–SiC subjected to different irradiation conditions and annealing temperatures: A multiple characterization study. Acta Mater. 2019, 181, 160–172. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Čížek, J.; Lorinčík, J.; Karlik, M.; Callisti, M.; Čech, J.; Havránek, V.; Li, B.; Krsjak, V.; et al. Characterizing heavy ions-irradiated Zr/Nb: Structure and mechanical properties. Mater. Des. 2022, 219, 110732. [Google Scholar] [CrossRef]
- Kaseem, M.; Kamil, M.P.; Ko, Y.G. Electrochemical response of MoO2-Al2O3 oxide films via plasma electrolytic oxidation. Surf. Coat. Technol. 2017, 322, 163–173. [Google Scholar] [CrossRef]
- Kaseem, M.; Hussain, T.; Baek, S.H.; Ko, Y.G. Formation of stable coral reef-like structures via self-assembly of functionalized polyvinyl alcohol for superior corrosion performance of AZ31 Mg alloy. Mater. Des. 2020, 193, 108823. [Google Scholar] [CrossRef]
- Hussain, T.; Kaseem, M.; Ko, Y.G. Hard acid–hard base interactions responsible for densification of alumina layer for superior electrochemical performance. Corros. Sci. 2020, 170, 108663. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.-Y.; Jiang, C.-C.; Liu, B.; Li, N.-B.; Zhu, R.-F.; Lu, Y.-P. Influence of process parameters on microstructure and corrosion properties of hopeite coating on stainless steel. Corros. Sci. 2015, 94, 428–437. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Lin, Y.G.; Zhou, F.; Kong, J.Z. Electrochemical properties promotion of CrSiN coatings in seawater via Ni incorporation. J. Alloys Compd. 2021, 856, 157450. [Google Scholar] [CrossRef]
Layer | Bias Voltage (V) | DC (A) | Ar Flow (sccm) | N2 Flow (sccm) | TMS Flow (sccm) | Time (min) |
---|---|---|---|---|---|---|
Cr | −30 | 0.5 | 30 | 0 | 0 | 5 |
CrN | −30 | 0.5 | 30 | 10 | 0 | 50 |
CrSiN | −30 | 0.5 | 30 | 10 | 5 | 20, 35, 50, 65 |
Indexes | 20 min | 35 min | 50 min | 65 min |
---|---|---|---|---|
H/GPa | 10.89 | 15.31 | 19.17 | 21.45 |
E/GPa | 121.5 | 145.2 | 170.9 | 185.2 |
H/E | 0.0896 | 0.1054 | 0.1122 | 0.1158 |
H3/E2 GPa | 0.0875 | 0.1702 | 0.2412 | 0.2877 |
Samples | Ecorr (V) | Icorr (A·cm−2) | Rcorr (mm/year) | Pe (%) |
---|---|---|---|---|
20 min | −1.184 | 6.64 × 10−6 | 0.147 | 99.15 |
35 min | −1.129 | 5.09 × 10−6 | 0.125 | 99.32 |
50 min | −1.074 | 4.38 × 10−6 | 0.075 | 99.56 |
65 min | −1.039 | 2.35 × 10−6 | 0.048 | 99.72 |
Coatings | Rs (Ω cm2) | CPEdl1 (Ω−1sn cm−2) | CPEdl2 (Ω−1sn cm−2) | Rct (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|
20 min | 35 | 8.15 × 10−6 | 7.58 × 10−6 | 7.84 × 105 | 1850 |
35 min | 37 | 7.76 × 10−6 | 7.06 × 10−6 | 9.75 × 105 | 3850 |
50 min | 38 | 7.03 × 10−6 | 6.35 × 10−6 | 1.38 × 106 | 6050 |
65 min | 41 | 5.95 × 10−6 | 5.88 × 10−6 | 2.16 × 106 | 8330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Yang, C. Study of Structural, Mechanical, and Corrosion Resistance of a Nanocomposite CrSiN/CrN/Cr Coating Deposited on AZ31: Effects of Deposition Time. Coatings 2023, 13, 678. https://doi.org/10.3390/coatings13040678
Cui C, Yang C. Study of Structural, Mechanical, and Corrosion Resistance of a Nanocomposite CrSiN/CrN/Cr Coating Deposited on AZ31: Effects of Deposition Time. Coatings. 2023; 13(4):678. https://doi.org/10.3390/coatings13040678
Chicago/Turabian StyleCui, Changqing, and Chunyan Yang. 2023. "Study of Structural, Mechanical, and Corrosion Resistance of a Nanocomposite CrSiN/CrN/Cr Coating Deposited on AZ31: Effects of Deposition Time" Coatings 13, no. 4: 678. https://doi.org/10.3390/coatings13040678
APA StyleCui, C., & Yang, C. (2023). Study of Structural, Mechanical, and Corrosion Resistance of a Nanocomposite CrSiN/CrN/Cr Coating Deposited on AZ31: Effects of Deposition Time. Coatings, 13(4), 678. https://doi.org/10.3390/coatings13040678