Boron-Based Mildew Preventive and Ultraviolet Absorbent Modification of Waterborne Polyurethane Coatings on Laminated Bamboo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modifications of Waterborne Polyurethane Coatings
2.2. Laminated Bamboo Surface Finishing
2.3. Physical and Chemical Properties of Coatings
2.4. Bacteriostatic Test Method
2.5. Static Contact Angle Test
2.6. Fourier Transform Infrared Spectrometer (FTIR) Determination
2.7. Thermogravimetric Analysis (TG)
3. Results and Discussion
3.1. Analysis of the Physical and Chemical Properties of Coatings
3.1.1. Coating Adhesion Analysis
3.1.2. Wear Resistance Analysis
3.1.3. Temperature Resistance Analysis
3.2. Antimildew Performance Evaluation
3.3. Wettability of Coating
3.4. FTIR Analysis
3.5. Thermal Stability Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Zhang, H.; He, Z.; Zhang, L.; Yue, X. Bamboo as an emerging resource for worldwide pulping and papermaking. BioResources 2018, 14, 3–5. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, J. The application of bamboo weaving in modern furniture. BioResources 2021, 16, 5024–5035. [Google Scholar] [CrossRef]
- Rana, K.R.; Chongtham, N.; Bisht, M.S. Evaluation of Proximate Composition, Vitamins, Amino Acids, Antioxidant activities with Minerals and Bioactive Compounds of Young Edible Bamboo (Phyllostachys mannii Gamble). Curr. Res. Nutr. Food Sci. J. 2022, 10, 321–333. [Google Scholar] [CrossRef]
- Li, M.; Ai, W.; Meng, Y.; Yang, M.; Hu, W.; Tu, J.; Xiao, F. Research Situation of Mildew and Antimould of Bamboo Wood. Farm Prod. Process. 2015, 392, 67–70. [Google Scholar] [CrossRef]
- Kartal, S.N.; Terzi, E.; Yılmaz, H.; Goodell, B. Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 2015, 99, 95–101. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, D.; Wei, W.; Wang, W.; Wang, X.; Wei, Q.; Niu, M.; Lin, M.; Rao, J.; Xie, Y. Mesoporous aluminosilicate improves mildew resistance of bamboo scrimber with Cu B P anti-mildew agents. J. Clean. Prod. 2019, 209, 273–282. [Google Scholar] [CrossRef]
- Xu, G.; Wang, L.; Liu, J.; Hu, S. Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int. Biodeterior. Biodegrad. 2013, 78, 103–107. [Google Scholar] [CrossRef]
- Zhang, J.; Du, C.; Li, Q.; Hu, A.; Peng, R.; Sun, F.; Zhang, W. Inhibition mechanism and antibacterial activity of natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo. R. Soc. Open Sci. 2021, 8, 202244. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yun, H.; Sun, X.; Hu, X. Effects of Inorganic Compound Mildew Preventive Agent on the Properties of Wood and Bamboo. China For. Prod. Ind. 2021, 58, 11–15. [Google Scholar] [CrossRef]
- Yves, K.G.; Chen, T.; Aladejana, J.T.; Wu, Z.; Xie, Y. Preparation, Test, and Analysis of a Novel Aluminosilicate-Based Antimildew Agent Applied on the Microporous Structure of Wood. ACS Omega 2020, 5, 8784–8793. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; You, J.; Qiu, Z. Improvement of Anti-leaching of Boride. China For. Prod. Ind. 1997, 24, 12–14. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, J.; Bao, J.; Yuan, S.; Wang, H.; Li, Q. Current Situation and Trend of Researches on Properties of Bamboo Scrimber for Architectural Structure. J. Zhejiang Sci. Technol. 2017, 37, 100–106. [Google Scholar]
- Queant, C.; Blanchet, P.; Landry, V.; Schorr, D. Comparison of two encapsulation systems of UV stabilizers on the UV protection efficiency of wood clear coats. J. Polym. Eng. 2018, 39, 94–103. [Google Scholar] [CrossRef]
- Rao, F.; Chen, Y.; Zhao, X.; Cai, H.; Li, N.; Bao, Y. Enhancement of bamboo surface photostability by application of clear coatings containing a combination of organic/inorganic UV absorbers. Prog. Org. Coat. 2018, 124, 314–320. [Google Scholar] [CrossRef]
- Domracheva, N.E.; Vorobeva, V.E.; Gruzdev, M.S.; Pyataev, A.V. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe2O3 nanoparticles formed in dendrimer. J. Nanoparticle Res. 2015, 17, 83. [Google Scholar] [CrossRef]
- Li, T.; Kang, H.; Lu, S.; Qin, W.; Wu, X. Study of resistance performance of Al2O3–ZnO–Y2O3 thermal control coating exposed to vacuum-ultraviolet irradiation. RSC Adv. 2022, 12, 13261–13266. [Google Scholar] [CrossRef] [PubMed]
- Can, U.; Kaynak, C. Performance of polylactide against UV irradiation: Synergism of an organic UV absorber with micron and nano-sized TiO2. J. Compos. Mater. 2020, 54, 2489–2504. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Lin, J.; Tan, H.; Zhang, C. UV-protective treatment for Vectran®fibers with hybrid coatings of TiO2/organic UV absorbers. J. Adhes. Sci. Technol. 2014, 28, 1773–1782. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, H.; Zhou, X.; Yu, L.; Li, H.; Yang, Z.-B. Effects of Differrent Boron-Based Flame Retardants on the Combustibility of Bamboo Filaments. Wood Res. 2022, 67, 221–230. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, H.; Wang, S.; Yu, L.; Li, H.; Yang, Z. Performance testing of modified waterborne polyurethane coating applied on laminated bamboo. BioResources 2022, 17, 6191–6202. [Google Scholar] [CrossRef]
- GB/T 4893.4-2013; Test of Surface Coatings of Furniture—Part 4: Determination of Adhesion—Cross Cut. Standardization Administration of China: Beijing, China, 2013.
- GB/T 4893.8-2013; Test of Surface Coatings of Furniture—Part 8: Determination of Wearability. Standardization Administration of China: Beijing, China, 2013.
- GB/T 4893.7-2013; Test of Surface Coatings of Furniture—Part 7: Determination of Surface Resistance to Alternation of Heat and Cold. Standardization Administration of China: Beijing, China, 2013.
- Takai, K. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int. J. Syst. Evol. Microbiol. 2002, 52, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Sun, Y.; Xie, H.; Shi, B.; Zhong, J.; Sheng, D.; Yang, Y. Preparation of graphene oxide/waterborne polyurethane via boric acid cross-linked dopamine enhanced barrier and mechanical properties. Front. Mater. 2022, 9, 1046125. [Google Scholar] [CrossRef]
- Nie, Z. The Design of Fluoride, Silicon, Boron Modified Waterborne Polyurethane Molecular Structure and Research the Performance of Materials. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2015. [Google Scholar]
- Jia, X.; Li, S.; Ma, R.; Du, H.; Yao, Y. Preparation and properties of polyurethane grouting material modified by nano-SiO2. J. Funct. Mater. 2022, 53, 7232–7236. [Google Scholar]
- Chang, J. Exploring the Morphology and Mechanical Properties of Benzotriazole Derivatives Hybridized Polyurethane Composites. Mater. Rep. 2019, 33, 1074–1078. [Google Scholar]
- Yu, Y. Study on Preparation and Yellowing-Resistance Mechanism of Fast-Drying and Yellowing-Resistant Green Tung Oil Coating. Master’s Thesis, Central South University of Forestry & Technology, Changsha, China, 2019. [Google Scholar]
- Sun, Y.; Wang, C.; Wu, Y.; Zuo, J.; Zhan, X. Effect of nano-boron carbide on the properties of waterborne polyurethane wood coatings. J. For. Eng. 2020, 5, 181–185. [Google Scholar] [CrossRef]
- Gauss, C.; Kadivar, M.; Pereira, R.G.F.; Savastano, H., Jr. Assessment of dendrocalamus asper (Schult and schult f.) (Poaceae) bamboo treated with tannin-boron preservatives. Constr. Build. Mater. 2021, 282, 122723. [Google Scholar] [CrossRef]
- Wu, Z.; Aladejana, J.T.; Huang, D.; Gong, X.; Liu, S.; Wang, X.; Xie, Y. Comparative effect of selected anti-mildew agents on bamboo bundles. BioResources 2021, 17, 243–254. [Google Scholar] [CrossRef]
- Akong, F.O.; Mutlu, M.; Pasc, A.; Cosgun, S.; Gérardin, P.; Gérardin-Charbonnier, C. Hydrogels obtained from an original catanionic system for efficient formulation of boron wood-preservatives. Int. Biodeterior. Biodegrad. 2013, 77, 123–126. [Google Scholar] [CrossRef]
- Huang, D.; Wang, W.; Chen, Y.; Wu, Z.; Xie, Y.; Yang, W.; Rao, J. Optimization of silica- alumina sol anti-mold agent of bamboo scrimber using response surface methodology. J. For. Eng. 2018, 3, 29–34. [Google Scholar] [CrossRef]
- Alhazmi, N.M. Fungicidal Activity of Silver and Silica Nanoparticles against Aspergillus sydowii Isolated from the Soil in Western Saudi Arabia. Microorganisms 2022, 11, 86. [Google Scholar] [CrossRef]
- Li, X.; Qiu, S.; Hu, Y.; Zhang, J. Study on Inhibitory Capacity of Nano-titania against Mould during Storage of Citrus. Food Sci. 2008, 29, 86–89. [Google Scholar]
- Shukla, D.K.; Sen, J.P.; Jain, A.K. Conventional and microwave assisted synthesis of new benzotriazole derivatives and their antimicrobial potential. Indian J. Chem. Sect. B-Org. Chem. Incl. Med. Chem. 2012, 51, 1776–1780. [Google Scholar] [CrossRef]
- Jin, Y.; Ning, P.; Ding, Z. Research progress of silica modified polyurethane resin. Thermosetting Resin 2019, 34, 61–65+70. [Google Scholar] [CrossRef]
- Yu, L.; Gong, C.; Luo, Z.; Zheng, Y.; Zhou, Z.; Xu, Y. Progress of Nano Silica Modified Waterborne Polyurethane. Fine Chem. Intermed. 2019, 49, 5–9. [Google Scholar] [CrossRef]
- Qin, F.; Li, X.; Wang, J.; Jian, X. Preparation of Silicone Modified Polyurethane/Nano-SiO2 Composite Superhydrophobic Coating. Acta Polym. Sin. 2021, 52, 1165–1173. [Google Scholar]
- Zhu, Y.; Zhu, Z.; Tu, H.; Li, J. A Study on TiO2/SiO2 Composite Waterborne Polyurethane. J. Lishui Univ. 2017, 39, 48–53. [Google Scholar] [CrossRef]
- Yu, G. Synthesis and Properties of Modified Nanoparticles/Waterborne Polyurethane Nanocomposites. Master’s Thesis, Huazhong Agriculture University, Wuhan, China, 2009. [Google Scholar]
- Wang, S. Study on preparation and property of nano TiO2/PUR composite. New Chem. Mater. 2020, 48, 65–67+72. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Zhang, Z.; Li, Z. Synthesis and Characterization of Tannic Acid based Fluorescent Waterborne Polyurethane. Leather Sci. Eng. 2022, 32, 39–44+51. [Google Scholar] [CrossRef]
- García-Pacios, V.; Costa, V.; Colera, M.; Miguel Martín-Martínez, J. Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. Int. J. Adhes. Adhes. 2010, 30, 456–465. [Google Scholar] [CrossRef]
- Junpirom, S.; Sukkasem, T.; Nuchitprasittichai, A.; Janphuang, P. TiO2/SiO2 Coated 310S Stainless Steel for Hydrogen Peroxide Generation via Photocatalytic Reaction. Curr. Appl. Sci. Technol. 2021, 22, 1–18. [Google Scholar] [CrossRef]
- Okada, Y.; Maeta, N.; Nakayama, K.; Kamiya, H. TiO2 Photocatalysis in Aromatic “Redox Tag”-Guided Intermolecular Formal [2 + 2] Cycloadditions. J. Org. Chem. 2018, 83, 4948–4962. [Google Scholar] [CrossRef] [PubMed]
- Cakic, S.M.; Stamenkovic, J.V.; Djordjevic, D.M.; Ristic, I.S. Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts. Polym. Degrad. Stab. 2009, 94, 2015–2022. [Google Scholar] [CrossRef]
- Cakić, S.M.; Špírková, M.; Ristić, I.S.; B-Simendić, J.K.; M-Cincović, M.; Poręba, R. The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content. Mater. Chem. Phys. 2013, 138, 277–285. [Google Scholar] [CrossRef]
- Pérez-Limiñana, M.A.; Arán-Aís, F.; Torró-Palau, A.M.; César Orgilés-Barceló, A.; Miguel Martín-Martínez, J. Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int. J. Adhes. Adhes. 2005, 25, 507–517. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, W.C.; Luo, S.Y. Study on Microphase Separation of Waterborne Polyurethane by the Infrared Spectroscopy Peak Fitting. Appl. Mech. Mater. 2014, 548–549, 164–171. [Google Scholar] [CrossRef]
- Chao, C.; Gao, M.; Chen, S. Expanded graphite. J. Therm. Anal. Calorim. 2017, 131, 71–79. [Google Scholar] [CrossRef]
- Gao, M.; Chen, S. Thermal degradation and flame retardancy of flexible polyurethane foams modified with borax. In Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology, Shenzhen, China, 9–10 April 2016. [Google Scholar]
- Jin, X.; Jiang, Z.; Wen, X.; Zhang, R.; Qin, D. Flame Retardant Properties of Laminated Bamboo Lumber Treated with Monoammonium Phosphate (MAP) and Boric acid/Borax (SBX) Compounds. BioResources 2017, 12, 5071–5085. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.R.S.; Batistella, M.A.; Guelli Ulson de Souza, S.M.d.A.; Ulson de Souza, A.A. Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applications. Carbohydr. Polym. 2021, 266, 118108. [Google Scholar] [CrossRef]
- Häublein, M.; Peter, K.; Bakis, G.; Mäkimieni, R.; Altstädt, V.; Möller, M. Investigation on the Flame Retardant Properties and Fracture Toughness of DOPO and Nano-SiO2 Modified Epoxy Novolac Resin and Evaluation of Its Combinational Effects. Materials 2019, 12, 1528. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yu, B.; Feng, Y.; Yang, Z.; Yin, B. Synthesis of a multifunctional bisphosphate and its flame retardant application in epoxy resin. Polym. Degrad. Stab. 2019, 165, 92–100. [Google Scholar] [CrossRef]
- Chen, J.B.; Guo, Q. Structures and Properties of the Coating for SPEEK/WPU. Appl. Mech. Mater. 2011, 117–119, 1330–1333. [Google Scholar] [CrossRef]
- Wang, M. Study on Heat Resistance of Waterborne Polyurethane Film. Master’s Thesis, Anhui University, Hefei, China, 2019. [Google Scholar]
Specimens | Antimildew Preventive | UV Absorbents | UV Absorbents Addition (wt%) |
---|---|---|---|
C0 | — | — | — |
C1 | Boric acid/borax | UV1130 | 1.0 |
C2 | 2.0 | ||
C3 | 3.0 | ||
C4 | nano–TiO2 | 1.0 | |
C5 | 2.0 | ||
C6 | 3.0 | ||
C7 | nano–SiO2 | 1.0 | |
C8 | 2.0 | ||
C9 | 3.0 |
Rating | Evaluation Criteria |
---|---|
0 | Cut edge completely smooth, without any drop failure |
1 | Drop failure of small flakes of the coating at the intersections of the cuts. A crosscut area is not distinctly greater than 5%. |
2 | The affected crosscut area is distinctly greater than 5% but not distinctly greater than 15% is affected. |
3 | The affected crosscut area is greater than 15% but not significantly greater than 35%. |
4 | Large pieces or some squares are partially or completely peeling off, and the affected cross area is obviously greater than 35% but not significantly greater than 65%. |
5 | The drop failure exceeds the fourth rating. |
Antimildew Agent | Antimildew Agent:WPU | Adhesion Rating |
---|---|---|
- | 0:1 | 1 |
Boric acid/borax | 1:1 | 2 |
Boric acid/borax | 1:1.5 | 2 |
Boric acid/borax | 1:2 | 1 |
Test Number | Antimildew Agent Composition | UV AbsorbentComposition | UV Absorbent Addition (wt%) | Adhesion Grade |
---|---|---|---|---|
C0 | - | - | - | 2 |
C1 | Boric acid/borax | UV1130 | 1.0 | 1 |
C2 | Boric acid/borax | UV1130 | 2.0 | 2 |
C3 | Boric acid/borax | UV1130 | 3.0 | 2 |
C4 | Boric acid/borax | nano–TiO2 | 1.0 | 1 |
C5 | Boric acid/borax | nano–TiO2 | 2.0 | 1 |
C6 | Boric acid/borax | nano–TiO2 | 3.0 | 1 |
C7 | Boric acid/borax | nano–SiO2 | 1.0 | 1 |
C8 | Boric acid/borax | nano–SiO2 | 2.0 | 1 |
C9 | Boric acid/borax | nano–SiO2 | 3.0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Zhang, C.; Zhou, X.; Chen, J.; Yu, L.; Li, H.; Wang, X. Boron-Based Mildew Preventive and Ultraviolet Absorbent Modification of Waterborne Polyurethane Coatings on Laminated Bamboo. Coatings 2023, 13, 687. https://doi.org/10.3390/coatings13040687
Guo H, Zhang C, Zhou X, Chen J, Yu L, Li H, Wang X. Boron-Based Mildew Preventive and Ultraviolet Absorbent Modification of Waterborne Polyurethane Coatings on Laminated Bamboo. Coatings. 2023; 13(4):687. https://doi.org/10.3390/coatings13040687
Chicago/Turabian StyleGuo, Hui, Caijuan Zhang, Xinjie Zhou, Jia Chen, Lili Yu, Hui Li, and Xiao Wang. 2023. "Boron-Based Mildew Preventive and Ultraviolet Absorbent Modification of Waterborne Polyurethane Coatings on Laminated Bamboo" Coatings 13, no. 4: 687. https://doi.org/10.3390/coatings13040687
APA StyleGuo, H., Zhang, C., Zhou, X., Chen, J., Yu, L., Li, H., & Wang, X. (2023). Boron-Based Mildew Preventive and Ultraviolet Absorbent Modification of Waterborne Polyurethane Coatings on Laminated Bamboo. Coatings, 13(4), 687. https://doi.org/10.3390/coatings13040687