Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems
Abstract
:1. Introduction
2. Two-Dimensional Simulation for the Variation of Magnet Configurations
2.1. Computational Details
2.2. Influences of Magnetic Field Intensity
2.3. Influences of the Yoke Thickness
2.4. Effects of Asymmetric Magnets
3. Three-Dimensional Simulation for Azimuthal Symmetry of Magnets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Buyle, G.; Depla, D.; Eufinger, K.; Haemers, J.; De Gryse, R.; De Bosscher, W. Simplified model for calculating the pressure dependence of a direct current planar magnetron discharge. J. Vac. Sci. Technol. A 2003, 21, 1218. [Google Scholar] [CrossRef]
- Savvides, N.; Window, B.J. Unbalanced magnetron ion-assisted deposition and property modification of thin films. J. Vac. Sci. Technol. A 1986, 4, 504. [Google Scholar] [CrossRef]
- Sproul, W.D. High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings. Vacuum 1998, 51, 641. [Google Scholar] [CrossRef]
- Bogaerts, A.; Bultinck, E.; Kolev, I.; Schwaederlé, L.; Aeken, K.V.; Buyle, G.; Depla, D. Computer modelling of magnetron discharges. J. Phys D Appl. Phys. 2009, 42, 194018. [Google Scholar] [CrossRef]
- Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L. Computer Modeling of Plasmas and Plasma-Surface Interactions. Plasma Process. Polym. 2009, 6, 295. [Google Scholar] [CrossRef]
- Chen, L.; Cui, S.; Tang, W.; Zhou, L.; Li, T.; Liu, L.; An, X.; Wu, Z.; Ma, Z.; Lin, H.; et al. Modeling and plasma characteristics of high-power direct current discharge. Plasma Sources Sci. Technol. 2020, 29, 025016. [Google Scholar] [CrossRef]
- Costin, C.; Marques, L.; Popa, G.; Gousset, G. Two-dimensional fluid approach to the dc magnetron discharge. Plasma Sources Sci. Technol. 2005, 14, 168. [Google Scholar] [CrossRef]
- Costin, C.; Popa, G.; Gousset, G. On the secondary electron emission in dc magnetron discharge. J. Optoelectron. Adv. Mater. 2005, 7, 2465. [Google Scholar]
- Pflug, A.; Siemers, M.; Schwanke, C.; Kurnia, B.F.; Sittinger, V.; Szyszka, B. Simulation of plasma potential and ion energies in magnetron sputtering. Mater. Technol. 2011, 26, 10. [Google Scholar] [CrossRef]
- Yagisawa, T.; Makabe, T. Modeling of dc magnetron plasma for sputtering: Transport of sputtered copper atoms. J. Vac. Sci. Technol. A 2006, 24, 908. [Google Scholar] [CrossRef]
- Nanbu, K.; Segawa, S.; Kondo, S. Self-consistent particle simulation of three-dimensional dc magnetron discharge. Vacuum 1996, 47, 1013. [Google Scholar] [CrossRef]
- Kondo, S.; Nanbu, K. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge. J. Vac. Sci. Technol. A 2001, 19, 830. [Google Scholar] [CrossRef]
- Kolev, I.; Bogaerts, A.; Gijbels, R. Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons. Phys. Rev. E 2005, 72, 056402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolev, I.; Bogaerts, A. PIC—MCC Numerical Simulation of a DC Planar Magnetron. Plasma Process. Polym. 2006, 3, 127. [Google Scholar] [CrossRef]
- Zheng, B.; Fu, Y.; Wang, K.; Tran, T.; Schuelke, T.; Fan, Q.H. Comparison of 1D and 2D particle-in-cell simulations for DC magnetron sputtering discharges. Phys. Plasmas 2021, 28, 014504. [Google Scholar] [CrossRef]
- Shon, C.H.; Lee, J.K.; Lee, H.J.; Yang, Y.; Chung, T.H. Velocity Distributions in Magnetron Sputter. IEEE Trans. Plasma Sci. 1998, 26, 1635. [Google Scholar] [CrossRef]
- Hur, M.Y.; Kim, J.S.; Lee, H.J. The Effect of Negative Ions from the Target on Thin Film Deposition in a Direct Current Magnetron Sputtering System. Thin Solid Film. 2015, 587, 3. [Google Scholar] [CrossRef]
- Hur, M.Y.; Oh, S.H.; Kim, H.J.; Lee, H.J. Numerical Analysis of the Incident ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure. Appl. Sci. Converg. Technol. 2018, 27, 19. [Google Scholar] [CrossRef]
- Jo, Y.H.; Park, H.S.; Hur, M.Y.; Lee, H.J. Curved-boundary particle-in-cell simulation for the investigation of the target erosion effect of DC magnetron sputtering system. AIP Adv. 2020, 10, 125224. [Google Scholar] [CrossRef]
- Jo, Y.H.; Cheon, C.; Park, H.; Hur, M.Y.; Lee, H.J. Multi-dimensional electrostatic plasma simulations using the particle-in-cell method for the low-temperature plasmas for materials processing. J. Korean Phys. Soc. 2022, 80, 787. [Google Scholar] [CrossRef]
- Kageyama, J.; Yoshimoto, M.; Matuda, A.; Akao, Y.; Shidoji, E. Numerical simulation of plasma confinement in DC magnetron sputtering under different magnetic fields and anode structures. Jpn. J. Appl. Phys. 2014, 53, 088001. [Google Scholar] [CrossRef]
- Matyash, K.; Fröhlich, M.; Kersten, H.; Thieme, G.; Schneider, R.; Hannemann, M.; Hippler, R. Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation. J. Phys. D Appl. Phys. 2004, 37, 2703. [Google Scholar] [CrossRef]
- Shidoji, E.; Ohtake, H.; Nakano, N.; Makabe, T. Two-Dimensional Self-Consistent Simulation of a DC Magnetron Discharge. Jpn. J. Appl. Phys. 1999, 38, 2131. [Google Scholar] [CrossRef]
- Kolev, I.; Bogaerts, A. Numerical Models of the Planar Magnetron Glow Discharges. Contrib. Plasma Phys. 2004, 44, 582. [Google Scholar] [CrossRef]
- Jimenez, F.J.; Dew, S.K.; Field, D.J. Comprehensive computer model for magnetron sputtering. II. Charged particle transport. J. Vac. Sci. Technol. A 2014, 32, 061301. [Google Scholar] [CrossRef]
- Kwon, U.H.; Choi, S.H.; Park, Y.H.; Lee, W.J. Multi-scale simulation of plasma generation and film deposition in a circular type DC magnetron sputtering system. Thin Solid Film. 2005, 475, 17. [Google Scholar] [CrossRef]
- Kwon, U.H.; Lee, W.J. Multiscale Monte Carlo Simulation of Circular DC Magnetron Sputtering: Influence of Magnetron Design on Target Erosion and Film Deposition. Jpn. J. Appl. Phys. 2006, 45, 8629. [Google Scholar] [CrossRef]
- Ido, S.; Suzuki, T.; Kashiwagi, M. Computational Studies on the Erosion Process in a Magnetron Sputtering System with a Ferromagnetic Target. Jpn. J. Appl. Phys. 1998, 37, 965. [Google Scholar] [CrossRef]
- Ido, S.; Suzuki, T.; Kashiwagi, M. Computational Studies of Plasma Generation and Control in a Magnetron Sputtering System. Jpn. J. Appl. Phys. 1999, 38, 4450. [Google Scholar]
- Kadlec, S. Computer simulation of magnetron sputtering—Experience from the industry. Surf. Coat. Technol. 2007, 202, 895. [Google Scholar] [CrossRef]
- Holik, M.; Bradley, J.; Gonzales, V.B.; Monaghan, D. Monte Carlo Simulation of Electrons’ and Ions’ Trajectories in Magnetron Sputtering Systems. Plasma Process. Polym. 2009, 6, S789. [Google Scholar] [CrossRef]
- Tsygankov, P.A.; Orozco, E.A.; Dugar-Zhabon, V.D.; López, J.E.; Cárdenas, P.A. Simulation of the electron dynamics in a magnetron sputtering device with equipotential and non-equipotential cathode. J. Phys. Conf. Ser. 2019, 1386, 012127. [Google Scholar] [CrossRef]
- Birdsall, C.K.; Langdon, A.B. Plasma Physics via Computer Simulation; McGraw-Hill: New York, NY, USA, 1985. [Google Scholar]
- Vahedi, V.; Surendra, M. A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges. Comput. Phys. Commun. 1995, 87, 179. [Google Scholar] [CrossRef] [Green Version]
- Hur, M.Y.; Kim, J.S.; Song, I.C.; Verboncoeur, J.P.; Lee, H.J. Model description of a two-dimensional electrostatic particle-in-cell simulation parallelized with a graphics processing unit for plasma discharges. Plasma Res. Express 2019, 1, 015016. [Google Scholar] [CrossRef]
- Iseki, T. Completely flat erosion magnetron sputtering using a rotating asymmetrical yoke magnet. Vacuum 2010, 84, 1372. [Google Scholar] [CrossRef]
- Iseki, T. Flat erosion magnetron sputtering with a moving unbalanced magnet. Vacuum 2006, 80, 662. [Google Scholar] [CrossRef]
- Hecimovic, A.; Keudell, A. Spokes in high power impulse magnetron sputtering plasmas. J. Phys. D Appl. Phys. 2018, 51, 453001. [Google Scholar] [CrossRef] [Green Version]
- Anders, A.; Yang, Y. Plasma studies of a linear magnetron operating in the range from DC to HiPIMS. J. Appl. Phys 2018, 123, 043302. [Google Scholar] [CrossRef]
- Boeuf, J.P. Rotating structures in low temperature magnetized plasmas—Insight from particle simulations. Front. Phys. 2014, 74, 1. [Google Scholar]
- Panjan, M.; Anders, A. Plasma potential of a moving ionization zone in DC magnetron sputtering. J. Appl. Phys. 2017, 121, 063302. [Google Scholar] [CrossRef] [Green Version]
- Panjan, M. Self-organizing plasma behavior in RF magnetron sputtering discharges. J. Appl. Phys. 2019, 125, 203303. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, Y.H.; Cheon, C.; Park, H.; Lee, H.J. Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems. Coatings 2023, 13, 749. https://doi.org/10.3390/coatings13040749
Jo YH, Cheon C, Park H, Lee HJ. Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems. Coatings. 2023; 13(4):749. https://doi.org/10.3390/coatings13040749
Chicago/Turabian StyleJo, Young Hyun, Cheongbin Cheon, Heesung Park, and Hae June Lee. 2023. "Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems" Coatings 13, no. 4: 749. https://doi.org/10.3390/coatings13040749
APA StyleJo, Y. H., Cheon, C., Park, H., & Lee, H. J. (2023). Particle-in-Cell Simulations for the Improvement of the Target Erosion Uniformity by the Permanent Magnet Configuration of DC Magnetron Sputtering Systems. Coatings, 13(4), 749. https://doi.org/10.3390/coatings13040749