Long-Term Results of Anodic and Thermal Oxidation Surface Modification on Titanium and Tantalum Implants
Abstract
:1. Introduction
- it must not alter the underlying bulk properties;
- it must be capable of withstanding chemical, electrical, mechanical, and thermal forces; and
- its properties must remain stable over time.
2. Materials and Methods
2.1. Study Design
- Presence of absence of suppuration around the implant;
- Presence or absence of plaque;
- Presence or absence of bleeding;
- Presence or absence of periimplantitis.
2.2. Production and Coating of the Tantalum and Titanium Implants
- Mechanical and chemical cleaning;
- Anodic oxidation;
- Washing and drying;
- Thermal treatment;
- Repetition of steps 2–4.
3. Results
3.1. Patients with Tantalum Oxide-Coated (Ta/TaO2) Dental Implants
3.2. Patients with Titanium Oxide-Coated (Ti/TiO2) Dental Implant
3.3. Patients Treated Using Titanium Oxide-Coated (Ti/TiO2) Osteosynthesis Plates
3.4. Evaluation of the Production Process and the Cost of the Coated Tantalum and Titanium Implants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AES | Auger electron spectroscopy |
XPS | X-ray Photoelectron Spectroscopy |
SIMS | Secondary Ion Mass Spectroscopy |
PTTM | Production of Porous Tantalum Trabecular Metal |
References
- Mishra, S.K.; Kumar, M.A.; Chowdhary, R. Anodized dental implant surface. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2017, 28, 76–99. [Google Scholar] [CrossRef]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [Green Version]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Villaça-Carvalho, M.F.L.; de Araújo, J.C.R.; Beraldo, J.M.; Prado, R.F.D.; Moraes, M.E.L.; Manhães Junior, L.R.C.; Codaro, E.N.; Acciari, H.A.; Machado, J.P.B.; Regone, N.N.; et al. Bioactivity of an Experimental Dental Implant with Anodized Surface. J. Funct. Biomater. 2021, 12, 39. [Google Scholar] [CrossRef]
- Kim, K.; Lee, B.A.; Piao, X.H.; Chung, H.J.; Kim, Y.J. Surface characteristics and bioactivity of an anodized titanium surface. J. Periodontal Implant Sci. 2013, 43, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Mühl, A.; Szabó, P.; Krafcsik, O.; Aigner, Z.; Kopniczky, J.; Ákos, N.; Marada, G.; Turzó, K. Comparison of surface aspects of turned and anodized titanium dental implant, or abutment material for an optimal soft tissue integration. Heliyon 2022, 8, e10263. [Google Scholar] [CrossRef]
- Luongo, G.; Cipressa, A.; Luongo, F. Retrospective Analysis of Long-Term (up to 12 years) Clinical and Radiologic Performance of Anodized-Surface Implants. Int. J. Periodontics Restor. Dent. 2018, 38, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Degidi, M.; Nardi, D.; Piattelli, A. 10-year follow-up of immediately loaded implants with TiUnite porous anodized surface. Clin. Implant Dent. Relat. Res. 2012, 14, 828–838. [Google Scholar] [CrossRef]
- Ferrantino, L.; Tironi, F.; Pieroni, S.; Sironi, A.; Simion, M. A Clinical and Radiographic Retrospective Study on 223 Anodized Surface Implants with a 5- to 17-Year Follow-up. Int. J. Periodontics Restor. Dent. 2019, 39, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Gelb, D.; McAllister, B.; Nummikoski, P.; Del Fabbro, M. Clinical and Radiographic Evaluation of Brånemark Implants with an Anodized Surface following Seven-to-Eight Years of Functional Loading. Int. J. Dent. 2013, 2013, 583567. [Google Scholar] [CrossRef] [Green Version]
- Maló, P.; de Araújo Nobre, M.; Gonçalves, Y.; Lopes, A.; Ferro, A. Immediate Function of Anodically Oxidized Surface Implants (TiUnite™) for Fixed Prosthetic Rehabilitation: Retrospective Study with 10 Years of Follow-Up. BioMed Res. Int. 2016, 2016, 2061237. [Google Scholar] [CrossRef]
- Wagenberg, B.; Froum, S.J. Long-Term Bone Stability around 312 Rough-Surfaced Immediately Placed Implants with 2–12-Year Follow-Up. Clin. Implant Dent. Relat. Res. 2015, 17, 658–666. [Google Scholar] [CrossRef]
- Tallarico, M.; Meloni, S.M. Retrospective Analysis on Survival Rate, Template-Related Complications, and Prevalence of Peri-implantitis of 694 Anodized Implants Placed Using Computer-Guided Surgery: Results Between 1 and 10 Years of Follow-Up. Int. J. Oral Maxillofac. Implant. 2017, 32, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G. Advanced anodic and thermal oxidation surfce modification technique on titanium implants (Studies of interaction between implants and the human body). In Recent Developments in Advanced Medical and Dental Materials Using Electrochemical Methodologies; Karlinsey, L.R., Ed.; Research Signpost: Thiruvananthapuram, India, 2009. [Google Scholar]
- Toth, C.; Szabo, G.; Kovacs, L.; Vargha, K.; Barabas, J.; Nemeth, Z. Titanium implants with oxidized surfaces: The background and long-term results. Smart Mater. Struct. 2002, 11, 813–818. [Google Scholar] [CrossRef]
- Szabo, G.; Haszmann, K.; Kovacs, L.; Vargha, K.; Imre, J. Process for obtaining tissue-protective deposit on implants prepared from titanium and/or titanium-base microalloy [Eljárás titánból és/vagy titánalapú mikro ötvözetből készült implantátumok szövetbarát bevonatának előállítására]. Patent HU213001B, 10 April 1992. [Google Scholar]
- Velich, N.; Nemeth, Z.; Suba, C.; Szabo, G. Removal of titanium plates coated with anodic titanium oxide ceramic: Retrospective study. J. Craniofac. Surg. 2002, 13, 636–640. [Google Scholar] [CrossRef]
- Velich, N.; Kadar, B.; Kiss, G.; Kovacs, K.; Reti, F.; Szigeti, K.; Garagiola, U.; Szabo, G. Effect of human organism on the oxide layer formed on titanium osteosynthesis plates: A surface analytical study. J. Craniofac. Surg. 2006, 17, 1144–1149. [Google Scholar] [CrossRef]
- Szabo, G.; Kovacs, L.; Vargha, K.; Barabas, J.; Nemeth, Z. A new advanced surface modification technique--titanium oxide ceramic surface implants: The background and long-term results. J. Long Term Eff. Med. Implant. 1999, 9, 247–259. [Google Scholar]
- Suba, C.; Lakatos-Varsányi, M.; Mikó, A.; Kovács, L.; Velich, N.; Kádár, B.; Szabó, G. Study of the electrochemical behaviour of Ti osteosynthesis plates used in maxillofacial surgery. Mater. Sci. Eng. A 2007, 447, 347–354. [Google Scholar] [CrossRef]
- Kiss, G.; Sebok, B.; Szabo, P.J.; Joob, A.F.; Szabo, G. Surface analytical studies of maxillofacial implants: Influence of the preoperational treatment and the human body on the surface properties of retrieved implants. J. Craniofac. Surg. 2014, 25, 1062–1067. [Google Scholar] [CrossRef]
- Suba, C.; Kovács, K.; Kiss, G.; Vida, G.; Varga, M.; Velich, N.; Kovács, L.; Kádár, B.; Szabó, G. Study of the interaction between Ti-based osteosynthesis plates and the human body by XPS, SIMS and AES. Smart Mater. Struct. 2006, 16, 100. [Google Scholar] [CrossRef]
- Jażdżewska, M.; Bartmański, M. Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants. Coatings 2021, 11, 115. [Google Scholar] [CrossRef]
- Drnovšek, N.; Rade, K.; Milačič, R.; Štrancar, J.; Novak, S. The properties of bioactive TiO2 coatings on Ti-based implants. Surf. Coat. Technol. 2012, 209, 177–183. [Google Scholar] [CrossRef]
- Parnia, F.; Yazdani, J.; Javaherzadeh, V.; Maleki Dizaj, S. Overview of Nanoparticle Coating of Dental Implants for Enhanced Osseointegration and Antimicrobial Purposes. J. Pharm. Pharm. Sci. 2017, 20, 148–160. [Google Scholar] [CrossRef]
- Dong, H.; Liu, H.; Zhou, N.; Li, Q.; Yang, G.; Chen, L.; Mou, Y. Surface Modified Techniques and Emerging Functional Coating of Dental Implants. Coatings 2020, 10, 1012. [Google Scholar] [CrossRef]
- Lacefield, W.R. Current status of ceramic coatings for dental implants. Implant Dent. 1998, 7, 315–322. [Google Scholar] [CrossRef]
- Ahn, T.K.; Lee, D.H.; Kim, T.S.; Jang, G.C.; Choi, S.; Oh, J.B.; Ye, G.; Lee, S. Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering. Adv. Exp. Med. Biol. 2018, 1077, 355–368. [Google Scholar] [CrossRef]
- Fialho, L.; Grenho, L.; Fernandes, M.H.; Carvalho, S. Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111761. [Google Scholar] [CrossRef] [PubMed]
- Piglionico, S.; Bousquet, J.; Fatima, N.; Renaud, M.; Collart-Dutilleul, P.Y.; Bousquet, P. Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J. Clin. Med. 2020, 9, 3657. [Google Scholar] [CrossRef]
- Bencharit, S.; Byrd, W.C.; Altarawneh, S.; Hosseini, B.; Leong, A.; Reside, G.; Morelli, T.; Offenbacher, S. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin. Implant Dent. Relat. Res. 2014, 16, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.G.; Huja, S.S.; Tee, B.C.; Larsen, P.E.; Kennedy, K.S.; Chien, H.H.; Lee, J.W.; Wen, H.B. Bone ingrowth and initial stability of titanium and porous tantalum dental implants: A pilot canine study. Implant Dent. 2013, 22, 399–405. [Google Scholar] [CrossRef]
- Bencharit, S.; Byrd, W.C.; Hosseini, B. Immediate placement of a porous-tantalum, trabecular metal-enhanced titanium dental implant with demineralized bone matrix into a socket with deficient buccal bone: A clinical report. J. Prosthet. Dent. 2015, 113, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Fraser, D.; Funkenbusch, P.; Ercoli, C.; Meirelles, L. Biomechanical analysis of the osseointegration of porous tantalum implants. J. Prosthet. Dent. 2020, 123, 811–820. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Hemmati, Y.; Saleh-Saber, F. Evaluation of stress distribution of porous tantalum and solid titanium implant-assisted overdenture in the mandible: A finite element study. Dent. Res. J. (Isfahan) 2021, 18, 108. [Google Scholar] [PubMed]
- Wang, H.; Su, K.; Su, L.; Liang, P.; Ji, P.; Wang, C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109908. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Cho, Y.D.; Ku, Y.; Ryoo, H.M. The worldwide patent landscape of dental implant technology. Biomater. Res. 2022, 26, 59. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, C.; Chen, H.; Zhao, X.; Wang, J. Porous Tantalum and Titanium in Orthopedics: A Review. ACS Biomater. Sci. Eng. 2019, 5, 5798–5824. [Google Scholar] [CrossRef]
Patient | Date of Surgery | Years of Survival | No. of Implants | Complication Failed, Progressive Bone Degradation | Successful Survival | |
---|---|---|---|---|---|---|
1 | Patient 1 | 1995 | 26 | 1 | - | 1 |
2 | Patient 2 | 1996 | 25 | 6 | - | 6 |
3 | Patient 3 | 1995–1997 | 26–24 | 10 | - | 10 |
4 | Patient 4 | 1997 | 24 | 3 | Inner screw fracture, solved | 3 |
5 | Patient 5 | 2000 | 21 | 10 | 1 failed | 9 |
6 | Patient 6 | 2000 | 21 | 2 | - | 2 |
7 | Patient 7 | 2001 | 20 | 6 | 1 failed | 5 |
8 | Patient 8 | 2001 | 20 | 8 | - | 8 |
9 | Patient 9 | 2002 | 19 | 7 | - | 7 |
10 | Patient 10 | 2002 | 19 | 2 | - | 2 |
11 | Patient 11 | 2005 | 16 | 3 | 1 failed | 2 |
12 | Patient 12 | 2005 | 16 | 6 | - | 6 |
12 | 1995–2005 | 16–26 | 64 | 3 failed | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinter, G.T.; Trimmel, B.; Kivovics, M.; Huszar, T.; Nemeth, Z.; Szabo, G. Long-Term Results of Anodic and Thermal Oxidation Surface Modification on Titanium and Tantalum Implants. Coatings 2023, 13, 760. https://doi.org/10.3390/coatings13040760
Pinter GT, Trimmel B, Kivovics M, Huszar T, Nemeth Z, Szabo G. Long-Term Results of Anodic and Thermal Oxidation Surface Modification on Titanium and Tantalum Implants. Coatings. 2023; 13(4):760. https://doi.org/10.3390/coatings13040760
Chicago/Turabian StylePinter, Gabor Tamas, Balint Trimmel, Marton Kivovics, Tamas Huszar, Zsolt Nemeth, and Gyorgy Szabo. 2023. "Long-Term Results of Anodic and Thermal Oxidation Surface Modification on Titanium and Tantalum Implants" Coatings 13, no. 4: 760. https://doi.org/10.3390/coatings13040760
APA StylePinter, G. T., Trimmel, B., Kivovics, M., Huszar, T., Nemeth, Z., & Szabo, G. (2023). Long-Term Results of Anodic and Thermal Oxidation Surface Modification on Titanium and Tantalum Implants. Coatings, 13(4), 760. https://doi.org/10.3390/coatings13040760