Chitosan-Coated Packaging Papers—Strength and Thermal Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation Procedures
2.2. Methods
2.2.1. Microscopic Analysis
2.2.2. Structural Properties
2.2.3. Strength Properties
2.2.4. Thermogravimetric Analysis
2.2.5. Thermal Aging of Paper Samples
2.2.6. Colorimetric Properties of Paper
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Fiber and Paper Sample Analysis
3.2. Thermogravimetric Analysis of Uncoated and Coated Paper Samples
3.3. Colorimetric Parameter Characterization of Uncoated and Coated Paper Samples during Accelerated Thermal Aging
3.4. Strength Properties of Uncoated and Coated Paper Samples during Accelerated Thermal Aging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, J.; Raghavendra, G.M.; Kim, D.; Seo, J. One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. Int. J. Biol. Macromol. 2018, 107, 2285–2290. [Google Scholar] [CrossRef]
- Wang, F.-J.; Wang, L.-Q.; Zhang, X.-C.; Ma, S.-F.; Zhao, Z.-C. Enhancement of oil resistance of cellulose packaging paper for food application by coating with materials derived from natural polymers. J. Food Eng. 2022, 332, 111039. [Google Scholar] [CrossRef]
- Chen, H.; Wang, B.; Li, J.; Ying, G.; Chen, K. High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose. Carbohydr. Polym. 2022, 288, 119371. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhu, E.-Q.; Xu, G.-F.; Naik, N.; Murugadoss, V.; Ma, M.-G.; Guo, Z.; Shi, Z.-J. Overview of renewable polysaccharide-based composites for biodegradable food packaging applications. Green Chem. 2021, 24, 480–492. [Google Scholar] [CrossRef]
- European Commission–Press Release. European Green Deal: Putting an End to Wasteful Packaging, Boosting Reuse and Recycling, Last Revised November 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7155 (accessed on 28 March 2023).
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Bin Arifin, M.A.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef]
- Tanpichai, S.; Witayakran, S.; Wootthikanokkhan, J.; Srimarut, Y.; Woraprayote, W.; Malila, Y. Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. Int. J. Biol. Macromol. 2019, 155, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.; Ochi, D.; Yoshida, C.M.P.; da Silva, C.F. Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr. Polym. 2019, 210, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Winotapun, C.; Hararak, B.; Treetong, A.; Chaloeijitkul, K.; Sane, A. Self-assembly of colloidal lignin nanosphere particles blended with chitosan composite coated bagasse paper: An eco-friendly food packaging with antimicrobial properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130207. [Google Scholar] [CrossRef]
- Hameed, A.Z.; Raj, S.A.; Kandasamy, J.; Baghdadi, M.A.; Shahzad, M.A. Chitosan: A Sustainable Material for Multifarious Applications. Polymers 2022, 14, 2335. [Google Scholar] [CrossRef]
- Adibi, A.; Valdesueiro, D.; Simon, L.; Lenges, C.P.; Mekonnen, T.H. High Barrier Sustainable Paper Coating Based on Engineered Polysaccharides and Natural Rubber. ACS Sustain. Chem. Eng. 2022, 10, 10718–10732. [Google Scholar] [CrossRef]
- Fernandes, S.C.; Freire, C.S.; Silvestre, A.J.; Neto, C.P.; Gandini, A. Novel materials based on chitosan and cellulose. Polym. Int. 2011, 60, 875–882. [Google Scholar] [CrossRef]
- Verma, A.; Singh, C.; Singh, V.; Jain, N. Fabrication and characterization of chitosan-coated sisal fiber–Phytagel modified soy protein-based green composite. J. Compos. Mater. 2019, 53, 2481–2504. [Google Scholar] [CrossRef]
- Wu, M.; Xu, R.; Liu, C.; Li, B.; Long, Z. Amelioration of Physical Properties and Printability of Paper Coated with N-methylated Chitosan. Sci. Rep. 2020, 10, 9936. [Google Scholar] [CrossRef] [PubMed]
- Khwaldia, K.; Basta, A.H.; Aloui, H.; El-Saied, H. Chitosan–caseinate bilayer coatings for paper packaging materials. Carbohydr. Polym. 2014, 99, 508–516. [Google Scholar] [CrossRef]
- Nicu, R.; Lupei, M.; Balan, T.; Bobu, E. Alkyl-Chitosan as Paper Coating Material to Improve Water Barrier Properties. Cellul. Chem. Technol. 2013, 47, 623–630. Available online: https://www.cellulosechemtechnol.ro/pdf/CCT7-8(2013)/p.623-630.pdf (accessed on 28 March 2023).
- Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. [Google Scholar] [CrossRef]
- Bordenave, N.; Grelier, S.; Coma, V. Hydrophobization and Antimicrobial Activity of Chitosan and Paper-Based Packaging Material. Biomacromolecules 2010, 11, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Egil, A.C.; Ozdemir, B.; Gunduz, S.K.; Altıkatoglu-Yapaoz, M.; Budama-Kilinc, Y.; Mostafavi, E. Chitosan/calcium nanoparticles as advanced antimicrobial coating for paper documents. Int. J. Biol. Macromol. 2022, 215, 521–530. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Cabañas-Romero, L.V.; Valls, C.; Valenzuela, S.V.; Roncero, M.B.; Pastor, F.I.J.; Diaz, P.; Martinez, J. Bacterial Cellulose–Chitosan Paper with Antimicrobial and Antioxidant Activities. Biomacromolecules 2020, 21, 1568–1577. [Google Scholar] [CrossRef]
- Brodnjak, U.V.; Tihole, K. Chitosan Solution Containing Zein and Essential Oil as Bio Based Coating on Packaging Paper. Coatings 2020, 10, 497. [Google Scholar] [CrossRef]
- Kurek, M.; Brachais, C.-H.; Nguimjeu, C.M.; Bonnotte, A.; Voilley, A.; Galić, K.; Couvercelle, J.-P.; Debeaufort, F. Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polym. Degrad. Stab. 2012, 97, 1232–1240. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Yusoff, M.; Zuhri, M.; Rizal, M.; Asyraf, M.; Sapuan, S.M.; Zainudin, E.S.; et al. Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Coelhoso, I.M.; Fernando, A.L. Chitosan Composites in Packaging Industry—Current Trends and Future Challenges. Polymers 2020, 12, 417. [Google Scholar] [CrossRef]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Li, X.; Guo, X.; Li, W.; Chen, J.; Liu, Q.; Xu, Q.; Wang, Q.; Yang, H.; Shui, Y.; et al. Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film. Nanomaterials 2020, 10, 1365. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Abdullah, N.; Norrrahim, M.N.F.; Kamarudin, S.H.; Ahmad, S.; Shazleen, S.S.; Rayung, M.; Asyraf, M.R.M.; Ilyas, R.A.; Kuzmin, M. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of PLA/cellulose composites. In Polylactic Acid-Based Nanocellulose and Cellulose Composites, 1st ed.; Parameswaranpillai, J., Siengchin, S., Salim, N.V., George, J.J., Poulose, A., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 145–164. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocoll. 2020, 102, 105629. [Google Scholar] [CrossRef]
- Casalini, S.; Baschetti, M.G. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: A review. J. Sci. Food Agric. 2023, 103, 1021–1041. [Google Scholar] [CrossRef]
- Rapa, M.; Vasile, C. Chitin- and Chitosan-Based Bionanocomposites for Active Packaging. In Chitin- and Chitosan-Based Biocomposites for Food Packaging Applications, 1st ed.; Jacob, J., Loganathan, S., Thomas, S., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 59–68. [Google Scholar] [CrossRef]
- Zeng, J.; Ren, X.; Zhu, S.; Gao, Y. Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. Int. J. Biol. Macromol. 2021, 192, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Flórez, M.; Guerra-Rodríguez, E.; Cazón, P.; Vázquez, M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J.F. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr. Polym. 2023, 309, 120666. [Google Scholar] [CrossRef]
- Yavorov, N.; Todorova, D.; Brodnjak, U.V.; Lasheva, V. Thermal stability of packaging papers treated of silver water. In International Symposium on Graphic Engineering and Design, Novi Sad, Serbia, 3-5 November 2022; Vladić, G., Ed.; University of Novi Sad: Novi Sad, Serbia, 2022; pp. 63–72. [Google Scholar] [CrossRef]
- Kumar, S.; Dutta, P.; Koh, J. A physico-chemical and biological study of novel chitosan–chloroquinoline derivative for biomedical applications. Int. J. Biol. Macromol. 2011, 49, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of lignin content in cellulose pulp on paper durability. Sci. Rep. 2020, 10, 19998. [Google Scholar] [CrossRef] [PubMed]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Przybysz, P. Accelerated ageing of paper: Effect of lignin content and humidity on tensile properties. Heritage Sci. 2021, 9, 132. [Google Scholar] [CrossRef]
- Afsharpour, M.; Imani, S. Preventive protection of paper works by using nanocomposite coating of zinc oxide. J. Cult. Herit. 2017, 25, 142–148. [Google Scholar] [CrossRef]
- Todorova, D.; Yavorov, N.; Lasheva, V.; Damyanova, S.; Kostova, I. Lavender Essential Oil as Antibacterial Treatment for Packaging Paper. Coatings 2023, 13, 32. [Google Scholar] [CrossRef]
- Todorova, D.; Yavorov, N.; Lasheva, V. Improvement of barrier properties for packaging applications. Sustain. Chem. Pharm. 2022, 27, 100685. [Google Scholar] [CrossRef]
Sample | General Characteristic | Mass of the Measured Sample (mg) |
---|---|---|
0 | only pulp | 2.7380 |
1 | base paper | 2.3680 |
2 | base paper + 0.5 g/m2 chitosan | 2.6950 |
3 | base paper + 1 g/m2 chitosan | 2.5190 |
4 | base paper + 2 g/m2 chitosan | 2.3580 |
Paper Properties | Testing Method | Sample | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Grammage (g/m2) | ISO 536:2012 | 50.89 ± 2 | 50.96 ± 2 | 50.48 ± 3 | 49.68 ± 3 | 49.95 ± 3 |
Thickness (mm) | ISO 534:2011 | 0.081 ± 0.01 | 0.081 ± 0.01 | 0.080 ± 0.01 | 0.078 ± 0.02 | 0.079 ± 0.02 |
Density (kg/m3) | ISO 534:2011 | 636.12 ± 1.03 | 629.13 ± 1.02 | 631.01 ± 1.73 | 662.41 ± 1.86 | 666.03 ± 2.17 |
Porosity (%) | ISO 534:2011 | 57.6 ± 0.5 | 58.06 ± 0.6 | 57.93 ± 0.8 | 55.84 ± 0.9 | 55.60 ± 0.9 |
Smoothness (Bekk, top side) (s) | ISO 5627:1995 | 10.98 ± 1.12 | 10.96 ± 1.19 | 12.27 ± 1.24 | 14.56 ± 1.36 | 16.42 ± 1.93 |
Sample | Tensile Index (Nm/g) | TEA Index (mJ/g) | Elongation (%) | Tear Index (mN∙m2/g) | ||||
---|---|---|---|---|---|---|---|---|
Thermal Aging (h) | ||||||||
0 | 72 | 0 | 72 | 0 | 72 | 0 | 72 | |
0 | 65.4 ± 2.04 | 64.9 ± 2.49 | 1270 ± 11.74 | 1020 ± 11.99 | 2.8 ± 1.73 | 2.2 ± 1.03 | 1.1004 ± 0.15 | 0.9803 ± 0.14 |
1 | 66.2 ± 3.80 | 63.1 ± 2.02 | 1320 ± 8.37 | 850 ± 7.28 | 2.8 ± 1.39 | 2.1 ± 1.66 | 1.1009 ± 0.17 | 0.9763 ± 0.20 |
2 | 59.0 ± 3.16 | 69.6 ± 3.27 | 1420 ± 7.17 | 1540 ± 8.95 | 3.6 ± 1.12 | 3.3 ± 1.27 | 1.0854 ± 0.22 | 1.0781 ± 0.27 |
3 | 63.0 ± 2.35 | 75.2 ± 3.01 | 1470 ± 4.86 | 1650 ± 5.43 | 3.6 ± 1.47 | 3.0 ± 1.28 | 1.0927 ± 0.38 | 1.0564 ± 0.40 |
4 | 66.7 ± 4.62 | 92.6 ± 1.51 | 1610 ± 7.98 | 1850 ± 6.60 | 3.6 ± 1.84 | 2.9 ± 1.33 | 1.1065 ± 0.41 | 1.0367 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabič-Brodnjak, U.; Yavorov, N.; Lasheva, V.; Todorova, D. Chitosan-Coated Packaging Papers—Strength and Thermal Stability. Coatings 2023, 13, 828. https://doi.org/10.3390/coatings13050828
Vrabič-Brodnjak U, Yavorov N, Lasheva V, Todorova D. Chitosan-Coated Packaging Papers—Strength and Thermal Stability. Coatings. 2023; 13(5):828. https://doi.org/10.3390/coatings13050828
Chicago/Turabian StyleVrabič-Brodnjak, Urška, Nikolay Yavorov, Veska Lasheva, and Dimitrina Todorova. 2023. "Chitosan-Coated Packaging Papers—Strength and Thermal Stability" Coatings 13, no. 5: 828. https://doi.org/10.3390/coatings13050828
APA StyleVrabič-Brodnjak, U., Yavorov, N., Lasheva, V., & Todorova, D. (2023). Chitosan-Coated Packaging Papers—Strength and Thermal Stability. Coatings, 13(5), 828. https://doi.org/10.3390/coatings13050828