Research Progress of Macrocell Corrosion of Steel Rebar in Concrete
Abstract
:1. Introduction
2. Corrosion of Reinforced Concrete
3. Macrocell Corrosion of Reinforced Concrete
3.1. Behavior and Mechanism of Macrocell Corrosion of Reinforced Concrete
3.2. Inducements of the Macrocell Corrosion of Reinforced Concrete
3.2.1. Macrocell Corrosion of Rebar Induced by Coupling of Dissimilar Rebars
3.2.2. Macrocell Corrosion of Rebar Induced by Concentration Difference of Service Environment
3.2.3. Other Inducements of the Macrocell Corrosion of Reinforced Concrete
4. Macrocell Corrosion of the Different Types of Rebars
4.1. Macrocell Corrosion of the Carbon-Steel Rebar
4.2. Macro-Cell Corrosion of the Coated Rebar
4.3. Macrocell Corrosion of the Alloyed-Steel Rebar
5. Experimental Methods and Testing Technologies of the Macrocell Corrosion of Reinforced Concrete
5.1. Experimental Research Methods
5.1.1. Basic Model for Microcell-Corrosion Experiment of Rebar
5.1.2. Experimental Model of Concentration-Difference-Induced Macrocell Corrosion of Rebars
5.1.3. Experimental Model for Macrocell Corrosion of Rebar Induced by Concrete Carbonization
5.2. Electrochemical Corrosion Test Technologies
6. Controlling Method of the Macrocell Corrosion of Reinforced Concrete
6.1. Corrosion Protection and Improving Corrosion Resistance of Rebar
6.2. Improving the Performance of the Concrete Protective Layer
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Natkunarajah, K.; Masilamani, K.; Maheswaran, S.; Lothenbach, B.; Amarasinghe, D.A.S.; Attygalle, D. Analysis of the trend of pH changes of concrete pore solution during the hydration by various analytical methods. Cem. Concr. Res. 2022, 156, 106780. [Google Scholar] [CrossRef]
- Grengg, C.; Müller, B.; Staudinger, C.; Mittermayr, F.; Breininger, J.; Ungerböck, B.; Borisov, S.M.; Mayr, T.; Dietzel, M. High-resolution optical pH imaging of concrete exposed to chemically corrosive environments. Cem. Concr. Res. 2019, 116, 231–237. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, J.; Zhang, P. Effects of carbonation curing regimes on alkalinity of self-compacting concretes for marine artificial reef. Constr. Build. Mater. 2023, 369, 130614. [Google Scholar] [CrossRef]
- Yao, N.; Zhou, X.; Liu, Y.; Shi, J. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions. Cem. Concr. Comp. 2022, 132, 104637. [Google Scholar] [CrossRef]
- Zheng, H.; Dai, J.; Hou, L.; Meng, G.; Poon, C.S.; Li, W. Enhanced passivation of galvanized steel bars in nano-silica modified cement mortars. Cem. Concr. Comp. 2020, 111, 103626. [Google Scholar] [CrossRef]
- Dong, Z.; Amir, P. Corrosion behavior of coupled active and passive reinforcing steels in simulated concrete pore solution. Constr. Build. Mate. 2020, 240, 117955. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Poursaee, A. Study of the passivation of carbon steel in simulated concrete pore solution using scanning electrochemical microscope (SECM). Materialia 2018, 2, 19–22. [Google Scholar] [CrossRef]
- Michele, W.T.M.; Pieter, D.; Janet, M.L. Corrosion-induced cracking and bond strength in reinforced concrete. Constr. Build. Mater. 2019, 208, 228–241. [Google Scholar]
- Vedalakshmi, R.; Kumar, K.; Raju, V.; Rengaswamy, N.S. Effect of prior damage on the performance of cement based coatings on rebar: Macrocell corrosion studies. Cem. Concr. Comp. 2000, 22, 417–421. [Google Scholar] [CrossRef]
- Gu, X.; Dong, Z.; Jin, Z. Macrocell corrosion between crossed steel rebars embedded in concrete under chloride environments. MATEC Web Conf. 2018, 199, 4005. [Google Scholar] [CrossRef]
- Bertolini, L.; Pedeferri, P.; Pastore, T.; Bazzoni, B.; Lazzari, L. Macrocell Effects on Potential Measurements in Concrete Cathodic Protection Systems. Corrosion 1996, 52, 552–557. [Google Scholar] [CrossRef]
- Shehata, M.H.; Thomas, M.D.A.; Bleszynski, R.F. The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cem. Concr. Res. 1999, 29, 1915–1920. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.; Ke, L.; Leung, C.K.Y. Mechanical and long-term durability prediction of GFRP rebars with the adoption of low-pH CSA concrete. Constr. Build. Mater. 2022, 346, 128444. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, B.O.; Brown, J.R.; Bensebaa, F.; Kingston, D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl. Surf. Sci. 2011, 257, 4669–4677. [Google Scholar] [CrossRef]
- Ai, Z.; Jiang, J.; Sun, W.; Jiang, X.; Yu, B.; Wang, K.; Zhang, Z.; Song, D.; Ma, H.; Zhang, J. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation—Passive film formation, the kinetics and mechanism analysis. Cem. Concr. Comp. 2018, 92, 178–187. [Google Scholar] [CrossRef]
- Olsson, C.; Landolt, D. Passive films on stainless steels-chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Zou, G.; Wang, Q.; Wang, G.; Liu, W.; Zhang, S.; Ai, Z.; Chen, H.; Ma, H.; Song, D. Revealing excellent passivation performance of a novel Cr-alloyed steel rebar in carbonized concrete environment. J. Mater. Res. Technol. 2023, 23, 1848–1861. [Google Scholar] [CrossRef]
- Feng, X.; Zuo, Y.; Tang, Y.; Zhao, X.; Zhao, J. The influence of strain on the passive behavior of carbon steel in cement extract. Corros. Sci. 2012, 65, 542–548. [Google Scholar] [CrossRef]
- Shi, J.; Ming, J.; Wu, M. Passivation and corrosion behavior of 2304 duplex stainless steel in alkali-activated slag materials. Cem. Concr. Comp. 2020, 108, 103532. [Google Scholar] [CrossRef]
- Marques, P.F.; Costa, A. Service life of RC structures: Carbonation induced corrosion. Prescriptive vs. performance-based methodologies. Constr. Build. Mater. 2010, 24, 258–265. [Google Scholar] [CrossRef]
- Houst, Y.F.; Wittmann, F.H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste. Cem. Concr. Res. 1994, 24, 1165–1176. [Google Scholar] [CrossRef]
- Lu, C.; Wang, W.; Li, Q.; Hao, M.; Xu, Y. Effects of micro-environmental climate on the carbonation depth and the pH value in fly ash concrete. J. Clean. Prod. 2018, 181, 309–317. [Google Scholar] [CrossRef]
- Joshi, S.; Ahn, Y.H.; Goyal, S.; Reddy, M.S. Performance of bacterial mediated mineralization in concrete under carbonation and chloride induced corrosion. J. Build. Eng. 2023, 69, 106234. [Google Scholar] [CrossRef]
- Cascudo, O.; Pires, P.; Carasek, H.; Castro, A.; Lopes, A. Evaluation of the pore solution of concretes with mineral additions subjected to 14 years of natural carbonation. Cem. Concr. Comp. 2021, 115, 103858. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Yang, L.; Wang, X.; Chen, J.; Wang, Z.; Zhou, H.; Zou, J.; Wang, F. Effect of aging treatment on microstructure and corrosion behavior of a Fe–18Cr–15Mn–0.66N stainless steel. J. Mater. Sci. Technol. 2022, 107, 197–206. [Google Scholar] [CrossRef]
- Jones, D. Principles and Prevention of Corrosion 2nd Edition. Mater. Design. 1996, 14, 168. [Google Scholar]
- Ampadu, K.O.; Torii, K. Chloride ingress and steel corrosion in cement mortars incorporating low-quality fly ashes. Cem. Concr. Res. 2002, 32, 893–901. [Google Scholar] [CrossRef]
- Uthaman, S.; George, R.P.; Vishwakarma, V.; Harilal, M.; Philip, J. Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Constr. Build. Mater. 2019, 221, 232–243. [Google Scholar] [CrossRef]
- Tsouli, S.; Lekatou, A.G.; Kleftakis, S.; Matikas, T.E.; Dalla, P.T. Corrosion behavior of 304L stainless steel concrete reinforcement in acid rain using fly ash as corrosion inhibitor. Procedia Struct. Integr. 2018, 10, 41–48. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, W.; Zhou, M.; Ma, H.; Zeng, P. Corrosion current distribution of macrocell and microcell of steel bar in concrete exposed to chloride environments. Constr. Build. Mater. 2013, 47, 104–110. [Google Scholar] [CrossRef]
- Subramaniam, K.V.; Bi, M.D. Investigation of steel corrosion in cracked concrete: Evaluation of macrocell and microcell rates using Tafel polarization response. Corros. Sci. 2010, 52, 2725–2735. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, J.; Qu, D. Theoretical and experimental study of microcell and macrocell corrosion in patch repairs of concrete structures. Cem. Concr. Comp. 2006, 28, 685–695. [Google Scholar] [CrossRef]
- Cao, Z.; Makoto, H.; Hiroki, G. Effect of Water-Cement Ratio on the Macrocell Polarization Behavior of Reinforcing Steel. J. Eng. 2014, 2014, 925410. [Google Scholar] [CrossRef]
- Warkus, J.; Raupach, M. Modelling of reinforcement corrosiongeometrical effects on macrocell corrosion. Mater. Corros. 2010, 61, 494–504. [Google Scholar] [CrossRef]
- Jiang, J.; Chu, H.; Liu, Y.; Wang, D.; Guo, D.; Sun, W. Galvanic corrosion of duplex corrosion-resistant steel rebars under carbonated concrete conditions. RSC Adv. 2018, 8, 16626–16635. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Guo, X.; Zhang, G. Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions. Corros. Sci. 2019, 147, 260–272. [Google Scholar] [CrossRef]
- Arya, A.; Vassie, P. Influence of cathode-to-anode area ratio and separation distance on galvanic corrosion currents of steel in concrete containing chlorides. Cem. Concr. Res. 1995, 25, 989–998. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; Geng, W.; Hu, Q.; Zhou, L. Corrosion behavior of the low alloy weathering steels coupled with stainless steel in simulated open atmosphere. Mater. Chem. Phys. 2022, 288, 126409. [Google Scholar] [CrossRef]
- Hornbostel, K.; Angst, U.M.; Elsener, B.; Larsen, C.K.; Geiker, M.R. Influence of mortar resistivity on the rate-limiting step of chloride-induced macro-cell corrosion of reinforcing steel. Corros. Sci. 2016, 110, 46–56. [Google Scholar] [CrossRef]
- Shi, L.; Song, W.; Dong, K.; Wang, H.; Shan, D.; Han, E. The change of cathode/anode roles and corrosion forms in 2024/Q235/304 tri-metallic couple with the variation of oxygen concentrations and area ratios. Corro. Sci. 2021, 184, 109400. [Google Scholar] [CrossRef]
- Christodoulou, C.; Goodier, C.; Austin, S.; Webb, J.; Glass, G.K. Diagnosing the cause of incipient anodes in repaired reinforced concrete structures. Corro. Sci. 2013, 69, 123–129. [Google Scholar] [CrossRef]
- Ominda, N.; Yoshitaka, K. Macro-cell Corrosion in Reinforcement of Concrete under Non-homogeneous Chloride Environment. J. Adv. Concr. Technol. 2009, 7, 31–40. [Google Scholar]
- Poursaee, A.; Laurent, A.; Hansson, C.M. Corrosion of steel bars in OPC mortar exposed to NaCl, MgCl2 and CaCl2: Macro- and micro-cell corrosion perspective. Cem. Concr. Res. 2010, 40, 426–430. [Google Scholar] [CrossRef]
- Bosque, I.F.S.; Heede, P.N.; Belie, N.D.; Rojas, M.I.S.; Medina, C. Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content. Constr. Build. Mater. 2020, 234, 117336. [Google Scholar] [CrossRef]
- Nasser, A.; Clément, A.; Laurens, S.; Castel, A. Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete. Corros. Sci. 2010, 52, 2878–2890. [Google Scholar] [CrossRef]
- Sohail, M.G.; Laurens, S.; Deby, F.; Balayssac, J.P. Significance of macrocell corrosion of reinforcing steel in partially carbonated concrete: Numerical and experimental investigation. Mater. Struct. 2015, 48, 217–233. [Google Scholar] [CrossRef]
- Xie, J.; He, J.; Wu, Y. Investigation on oxygen concentration difference macrocell corrosion for steel A3. J. Univ. Sci. Technol. Beijing 1994, 16, 59–63. [Google Scholar]
- Sylvia, K.; Ueli, A.; Marc, Z.; Christoph, G. Defects in epoxy-coated reinforcement and their impact on the service life of a concrete structure. Struct. Concr. 2015, 16, 398–405. [Google Scholar]
- Hwang, J.P.; Jung, M.S.; Kim, M.; Ann, K.Y. Corrosion risk of steel fibre in concrete. Constr. Build. Mater. 2015, 101, 239–245. [Google Scholar] [CrossRef]
- Song, D.; Wang, G.; Yang, F.; Chen, H.; Liang, N.; Ma, H.; Jiang, J.; Ma, X. Microstructure and deformation behavior of a novel steel rebar: Effect of the heterogeneous microstructure of soft ferrite and Hard bainite. J. Mater. Res. Technol. 2020, 9, 12281–12292. [Google Scholar] [CrossRef]
- Hansson, C.M.; Poursaee, A.; Laurent, A. Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes. Cem. Concr. Res. 2006, 36, 2098–2102. [Google Scholar] [CrossRef]
- Jin, Z.; Jiang, C.; Gu, X.; Dong, Z. Macro-cell corrosion between crossed steel bars in cracked concrete. Constr. Build. Mater. 2022, 350, 128867. [Google Scholar] [CrossRef]
- Cheng, A.; Huang, R.; Wu, J.; Chen, C. Effect of rebar coating on corrosion resistance and bond strength of reinforced concrete. Constr. Build. Mater. 2005, 19, 404–412. [Google Scholar] [CrossRef]
- Yadav, A.P.; Katayama, H.; Noda, K.; Masuda, H.; Nishikata, A.; Tsuru, T. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte. Electrochim. Acta 2007, 52, 3121–3129. [Google Scholar] [CrossRef]
- Mohammed, M.S.H.S.; Raghavan, R.S.; Knight, G.M.S.; Murugesan, V. Macrocell Corrosion Studies of Coated Rebars. Arab. J. Sci. Eng. 2014, 39, 3535–3543. [Google Scholar]
- Okonkwo, B.O.; Ming, H.; Wang, J.; Han, E.; Rahimi, E.; Davoodi, A.; Hosseinpour, S. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld. J. Mater. Sci. Technol. 2020, 78, 38–50. [Google Scholar] [CrossRef]
- Li, L.; Qiao, Y.; Zhang, L.; Ma, A.; Daniel, E.; Ma, R.; Chen, J.; Zheng, Y. Effect of cavitation erosion induced surface damage on pitting and passive behaviors of 304L stainless steel. Int. J. Miner. Metall. Mater. 2023, 26, 1551–1558. [Google Scholar]
- Wang, P.; Cai, J.; Cheng, X.; Ma, L.; Li, X. Inhibition of galvanic corrosion between crystallographic orientations in low alloy steel by grain ultra-refinement. Mater. Today Commun. 2022, 31, 103742. [Google Scholar] [CrossRef]
- Okonkwo, B.O.; Ming, H.; Meng, F.; Wang, J.; Xu, X.; Han, E. Galvanic corrosion study between low alloy steel A508 and 309/308L stainless steel dissimilar metals: A case study of the effects of oxide film and exposure time. J. Nucl. Mater. 2021, 548, 152853. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Y.; Zhang, G. Interaction between crevice and galvanic corrosion of X65 carbon steel in the CO2-saturated NaCl solution under the coupling of crevice and galvanic effects. J. Electroanal. Chem. 2022, 918, 116482. [Google Scholar] [CrossRef]
- Shevtsov, D.S.; Zartsyn, I.D.; Komarova, E.S. Relation between resistivity of concrete and corrosion rate of reinforcing bars caused by galvanic cells in the presence of chlorid. Cem. Concr. Comp. 2021, 119, 104026. [Google Scholar] [CrossRef]
- Caglar, E.; Geoffrey, S. The effect of macro-galvanic cells on corrosion and impressed current cathodic protection for offshore monopile steel structures. Ocean Eng. 2022, 265, 112575. [Google Scholar]
- Abreu, C.M.; Cristóbal, M.J.; Montemor, M.F.; Nóvoa, X.R.; Pena, G.; Pérez, M.C. Galvanic coupling between carbon steel and austenitic stainless steel in alkaline media. Electrochim. Acta 2002, 47, 2271–2279. [Google Scholar] [CrossRef]
- Jin, Z.; Feng, G.Y.; Jiang, Y. Corrosion Behavior of Reinforcement Concrete with Cracks in Marine Environment Using Wire Beam Electrode technique. J. Chin. Ceram. Soc. 2020, 48, 1791–1800. [Google Scholar]
- Shi, L.; Song, Y.; Zhao, P.; Wang, H.; Dong, K.; Shan, D.; Han, E. Variations of galvanic currents and corrosion forms of 2024/Q235/304 tri-metallic couple with multivariable cathode/anode area ratios: Experiments and modeling. Electrochim. Acta 2020, 359, 136947. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Q.; Zhao, Y.; Li, P.; Ji, T.; Zou, G.; Qiao, Y.; Zhou, Z.; Wang, G.; Song, D. Research Progress of Macrocell Corrosion of Steel Rebar in Concrete. Coatings 2023, 13, 853. https://doi.org/10.3390/coatings13050853
Wang J, Wang Q, Zhao Y, Li P, Ji T, Zou G, Qiao Y, Zhou Z, Wang G, Song D. Research Progress of Macrocell Corrosion of Steel Rebar in Concrete. Coatings. 2023; 13(5):853. https://doi.org/10.3390/coatings13050853
Chicago/Turabian StyleWang, Jun, Qiuyue Wang, Yun Zhao, Pengfei Li, Tongyuan Ji, Gongnian Zou, Yanxin Qiao, Zhou Zhou, Guowei Wang, and Dan Song. 2023. "Research Progress of Macrocell Corrosion of Steel Rebar in Concrete" Coatings 13, no. 5: 853. https://doi.org/10.3390/coatings13050853
APA StyleWang, J., Wang, Q., Zhao, Y., Li, P., Ji, T., Zou, G., Qiao, Y., Zhou, Z., Wang, G., & Song, D. (2023). Research Progress of Macrocell Corrosion of Steel Rebar in Concrete. Coatings, 13(5), 853. https://doi.org/10.3390/coatings13050853