Direct Fabrication and Characterization of Zirconia Thick Coatings on Zirconium Hydride as a Hydrogen Permeation Barrier
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth Kinetics of the Thick Zirconia Coating
3.2. Microstructure of the Thick Zirconia Coating
3.3. Phase Evolution Behavior of the Thick Zirconia Coating
3.4. Hydrogen Permeation Barrier Property of the Thick Zirconia Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fei, W.; Gong, H.R. First principles study of various Zr-H phases with low H concentrations. Int. J. Hydrogen Energy 2012, 37, 12393. [Google Scholar]
- Tunes, M.A.; Silva, C.M.; Edmondson, P.D. Site specific dependencies of hydrogen concentrations in zirconium hydrides. Scr. Mater. 2019, 158, 136. [Google Scholar] [CrossRef]
- Ma, M.; Wang, L.; Wang, Y.; Xiang, W.; Tang, B.; Lyu, P.; Tan, X. Oxidation behaviour of zirconium hydride and its influence on the thermal desorption kinetics. Corros. Sci. 2018, 134, 199. [Google Scholar] [CrossRef]
- Chen, W.D.; Yan, S.F.; Zhong, X.K. Properties of oxide film on the surface of ZrHx (x = 0~2). Mater. Sci. Forum 2011, 686, 609–612. [Google Scholar] [CrossRef]
- Wang, L.J.; Chen, B.D.; Yao, D. Reactivity temperature coefficient evaluation of uranium zirconium hydride fuel element in power reactor. Nucl. Eng. Des. 2013, 257, 61–66. [Google Scholar] [CrossRef]
- Zhang, G.K.; Wang, X.L.; Yang, F.L.; Shi, Y.; Song, J.F.; Lai, X.C. Energetics and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3/FeAl with two different interfaces. Int. J. Hydrogen Energy 2013, 38, 7550–7560. [Google Scholar] [CrossRef]
- He, D.; Li, S.; Liu, X.; Zhang, C.; Yu, Q.; Wang, S.; Jiang, L. Preparation of Cr2O3 film by MOCVD as hydrogen permeation barrier. Fusion Eng. Des. 2014, 89, 35–39. [Google Scholar] [CrossRef]
- Katoh, Y.; Vasudevamurthy, G.; Nozawa, T.; Snead, L.L. Properties of zirconium carbide for nuclear fuel applications. J. Nucl. Mater. 2013, 441, 718–742. [Google Scholar] [CrossRef]
- Nemanic, V.; McGuiness, P.J.; Daneu, N.; Zajec, B.; Siketic, Z.; Waldhauser, W. Hydrogen permeation through silicon nitride films. J. Alloys Compd. 2012, 539, 184–189. [Google Scholar] [CrossRef]
- Wang, W.K.; Yan, G.Q.; Ma, Z.H.; Zhang, J.D.; Wang, L.J.; Guo, Z.C. Mechanisms of Growth and Hydrogen Permeation of Zirconium Nitride Film on Zirconium Hydride. Coatings 2023, 16, 349. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cao, J.; Peng, Z.; Wang, Q.; Matykina, E.; Skeldon, P.; Thompson, G.E. Wear-resistant coatings formed on Zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes. Electrochim. Acta 2014, 116, 453–466. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef] [PubMed]
- Boissonnet, G.; Chalk, C.; Nicholls, J.R.; Bonnet, G.; Pedraza, F. Thermal Insulation of YSZ and Erbia-Doped Yttria-Stabilised Zirconia EB-PVD Thermal Barrier Coating Systems after CMAS Attack. Materials 2020, 13, 4382. [Google Scholar] [CrossRef]
- Adraider, Y.; Pang, Y.X.; Nabhani, F.; Hodgson, S.N.; Sharp, M.C.; Al-Waidh, A. Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol-gel technique. Ceram. Int. 2013, 39, 9665–9670. [Google Scholar] [CrossRef]
- Peng, J.Q.; Chen, Y.; Wu, M.; Yan, G.Q.; Wang, L.J.; Li, J.S.; Guo, G.C. Hydrogen desorption behavior of the hydrides of Zr-Y alloys under Ar and CO2 atmosphere. J. Alloys Compd. 2017, 693, 103–109. [Google Scholar] [CrossRef]
- Kaseem, M.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Prog. Mater. Sci. 2020, 117, 100735. [Google Scholar] [CrossRef]
- Narayanan, T.S.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Keshavarz, M.K.; Babaei, K. Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surf. Interfaces 2021, 25, 101283. [Google Scholar] [CrossRef]
- Kung, K.C.; Lee, T.M.; Chen, J.L.; Lui, T.S. Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surf. Coat. Technol. 2010, 205, 1714–1722. [Google Scholar] [CrossRef]
- Lin, X.; Tan, L.; Zhang, Q.; Yang, K.; Hu, Z.; Qiu, J.; Cai, Y. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomater. 2013, 9, 8631–8642. [Google Scholar] [CrossRef]
- Wang, Z.G.; Chen, W.D.; Yan, S.F.; Fan, X.J.; Xu, Z.G. Characterization of ZrO2 ceramic coatings on ZrH1.8 prepared in different electrolytes by micro-arc oxidation. Rare Met. 2022, 41, 1043–1050. [Google Scholar] [CrossRef]
- Wang, Z.G.; Chen, W.D.; Yan, S.F.; Fan, X.J.; Xu, Z.G. Optimization of the electrical parameters for micro-arc oxidation of ZrH1.8 alloy. Rare Met. 2022, 41, 2324–2330. [Google Scholar] [CrossRef]
- Sharma, A.; Witz, G.; Howell, P.C.; Hitchman, N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. J. Eur. Ceram. Soc. 2021, 41, 3706. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Han, L.; Chen, S. Properties of hydrogen permeation barrier on the surface of zirconium hydride. Rare Met. 2008, 27, 473–478. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, T.; Jiang, B.; Guo, L. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Appl. Surf. Sci. 2004, 233, 258–267. [Google Scholar] [CrossRef]
- Khan, R.H.U.; Yerokhin, A.L.; Matthews, A. Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation. Philos. Mag. 2008, 88, 795–807. [Google Scholar] [CrossRef]
- Hussein, R.O.; Zhang, P.; Nie, X.; Xia, Y.; Northwood, D.O. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surf. Coat. Technol. 2011, 206, 1990–1997. [Google Scholar] [CrossRef]
- Zou, Y.C.; Wang, Y.M.; Sun, Z.D.; Cui, Y.; Jin, T.; Wei, D.Q.; Ouyang, J.H.; Jia, D.C.; Zhou, Y. Plasma electrolytic oxidation induced ‘local over-growth’ characteristic across substrate/coating interface: Effects and tailoring strategy of individual pulse energy. Surf. Coat. Technol. 2018, 342, 198–208. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhong, Z.C.; Yu, D.Z.; Liu, F.; Luo, J.M. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy. J. Mater. Sci. Mater. Med. 2012, 23, 2839–2846. [Google Scholar] [CrossRef] [PubMed]
- Durdu, S. Characterization, Bioactivity and Antibacterial Properties of Copper-Based TiO2 Bioceramic Coatings Fabricated on Titanium. Coatings 2019, 9, 1. [Google Scholar] [CrossRef]
- Ji, P.; Lü, K.; Chen, W.; Wang, M. Study on Preparation of Micro-Arc Oxidation Film on TC4 Alloy with Titanium Dioxide Colloid in Electrolyte. Coatings 2022, 12, 1093. [Google Scholar] [CrossRef]
- Wang, W.-K.; Liu, K.-F.; Tsai, P.-C.; Xu, Y.-J.; Huang, S.-Y. Influence of Annealing Temperature on the Properties of ZnGa2O4 Thin Films by Magnetron Sputtering. Coatings 2019, 9, 859. [Google Scholar] [CrossRef]
- Cheng, Y.; Matykina, E.; Skeldon, P.; Thompson, G. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime. Electrochim. Acta 2011, 56, 8467–8476. [Google Scholar] [CrossRef]
- Xue, W.B.; Deng, Z.W.; Lai, Y.C.; Chen, R.Y. Analysis of Phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy. J. Am. Ceram. Soc. 1998, 81, 1365–1368. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Han, Y. Structural characteristics and outward-inward growth behavior of tantalum oxide coatings on tantalum by micro-arc oxidation. Surf. Coat. Technol. 2013, 214, 110–116. [Google Scholar] [CrossRef]
- Bisson, J.F.; Fournier, D.; Poulain, M.; Lavigne, O.; Mévrel, R. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. J. Am. Ceram. Soc. 2000, 83, 1993–1998. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Wang, Z.G.; Ouyang, J.H.; Ma, Y.H.; Wang, Y.J.; Xie, L.Y.; Hennichea, A.; Liu, Z.G. Enhanced nucleation undercooling and surface self-nanocrystallization of Al2O3-ZrO2(Y2O3) eutectic ceramics. J. Eur. Ceram. Soc. 2019, 39, 1707. [Google Scholar] [CrossRef]
- Wang, W.; Yan, G.; Zhang, J.; Ma, Z.; Wang, L.; Guo, Z.; Zhang, S.; Wu, Y. Hydrogen Permeation Behavior of Zirconium Nitride Film on Zirconium Hydride. Materials 2022, 15, 550. [Google Scholar] [CrossRef]
- Wu, M.; Peng, J.; Yan, G.; Chen, Y.; He, Z.; Xu, Z.; Wang, L. Preparation and properties of composite hydrogen permeation barrier on ZrH1.8 by sol–gel technique. Surf. Coat. Technol. 2018, 352, 159–165. [Google Scholar] [CrossRef]
- Moya, J.S.; Diaz, M.; Bartolomé, J.F.; Roman, E.; Sacedon, J.L.; Izquierdo, J. Zirconium oxide film formation on zircaloy by water corrosion. Acta Mater. 2000, 48, 4749–4754. [Google Scholar] [CrossRef]
- Haurat, E.; Crocombette, J.P.; Tupin, M. Interactions of hydrogen with zirconium alloying elements and oxygen vacancies in monoclinic zirconia. Acta Mater. 2022, 225, 117547. [Google Scholar] [CrossRef]
MAO Coatings | Scherrer’s Method, D (nm) | W-H Method (UDM) | |
---|---|---|---|
D (nm) | ε (10−4) | ||
Bottom layer | 24.0 | 21.5 | 3.3 |
Intermediate layer | 31.6 | 33.4 | 12.6 |
Top layer | 22.8 | 12.0 | −42.3 |
Post-vacuum dehydrogenation | 20.6 | 14.1 | −29.9 |
Barrier System | Coating Techniques | Hydrogen Desorption | PRF Values | Ref. |
---|---|---|---|---|
ZrO2 | MAO | 650 °C × 10 h | 13.30 | Present work |
ZrO2 | In situ reaction | 600 °C × 10 h | 3.48 | [39] |
ZrN | In situ reaction | 600 °C × 10 h | 9.40 | [39] |
ZrO2 | In situ reaction | 630 °C × 10 h | 2.17 | [24] |
ZrO2 | In situ reaction | 650 °C × 10 h | 1.59 | [24] |
SiO2–P2O5 | Sol-gel | 600 °C × 6 h | 3.08 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-G.; Chen, W.-D.; Yan, S.-F.; Zhong, X.-K.; Ma, W.; Song, X.-W.; Wang, Y.-M.; Ouyang, J.-H. Direct Fabrication and Characterization of Zirconia Thick Coatings on Zirconium Hydride as a Hydrogen Permeation Barrier. Coatings 2023, 13, 884. https://doi.org/10.3390/coatings13050884
Wang Z-G, Chen W-D, Yan S-F, Zhong X-K, Ma W, Song X-W, Wang Y-M, Ouyang J-H. Direct Fabrication and Characterization of Zirconia Thick Coatings on Zirconium Hydride as a Hydrogen Permeation Barrier. Coatings. 2023; 13(5):884. https://doi.org/10.3390/coatings13050884
Chicago/Turabian StyleWang, Zhi-Gang, Wei-Dong Chen, Shu-Fang Yan, Xue-Kui Zhong, Wen Ma, Xi-Wen Song, Ya-Ming Wang, and Jia-Hu Ouyang. 2023. "Direct Fabrication and Characterization of Zirconia Thick Coatings on Zirconium Hydride as a Hydrogen Permeation Barrier" Coatings 13, no. 5: 884. https://doi.org/10.3390/coatings13050884