Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PAO/MgO Nanofluids
2.3. Preparation of PAO/MgO Nanofluid-based Dielectric Fluid
2.4. Determination of Breakdown Voltage
2.5. Measurements of Volume Resistivity, Dielectric Loss, and Relative Permittivity
2.6. Measurement of Thermal Conductivity of Liquids
3. Results and Discussion
3.1. Dielectric Properties of PAO/MgO Nanofluids
3.2. Thermal Conductivity of PAO/MgO Nanofluids
3.3. Dielectric Properties of PAO/MgO Nanofluid-based Dielectric Fluid
3.4. Thermal Conductivity of PAO/MgO Nanofluid-Based Dielectric Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chudnovsky, B.H. Lubrication of Electrical Contacts. In Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, Chicago, IL, USA, 26–28 September 2005; pp. 107–114. [Google Scholar]
- Chudnovsky, B.H. Degradation of Power Contacts in Industrial Atmosphere: Silver Corrosion and Whiskers. In Proceedings of the Forty-Eighth IEEE Holm Conference on Electrical Contacts, Orlando, FL, USA, 23 October 2002; pp. 140–150. [Google Scholar]
- Crilly, L.; Jackson, R.L.; Bond, S.; Mills, G.; Bhargava, S. An Investigation of the Electrical Contact Resistance Change, Lubrication, and Wear Properties of a Nanolubricant. In Proceedings of the 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM), San Antonio, TX, USA, 30 September–7 October 2020; pp. 1–7. [Google Scholar]
- Crilly, L.; Jackson, R.L.; Mills, G.; Bond, S.; Bhargava, S. An Exploration of the Friction, Wear, and Electrical Effects of Nanoparticle Enhanced and Conventional Lubricants. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1757–1770. [Google Scholar] [CrossRef]
- Murphy, W.R.; Blain, D.A.; Galiano-Roth, A.S.; Galvin, P.A. Benefits of Synthetic Lubricants in Industrial Applications. J. Synth. Lubr. 2002, 18, 301–325. [Google Scholar] [CrossRef]
- Rafiq, M.; Shafique, M.; Azam, A.; Ateeq, M. The Impacts of Nanotechnology on the Improvement of Liquid Insulation of Transformers: Emerging Trends and Challenges. J. Mol. Liq. 2020, 302, 112482. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Zhou, Y.; Li, C.R.; Wang, Q.; Qi, B. Recent Progress in Nanofluids Based on Transformer Oil: Preparation and Electrical Insulation Properties. IEEE Electr. Insul. Mag. 2014, 30, 23–32. [Google Scholar] [CrossRef]
- Afzal, A.B.; Noorden, Z.A.; Afzal, A.B. A Simulation Study on Electrical and Thermal Properties of Nanofluids Based Mineral Oils for Potential Transformer Applications. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2312–2319. [Google Scholar] [CrossRef]
- Pattanayak, B.; Mund, A.; Jayakumar, J.S.; Parashar, K.; Parashar, S.K.S. Estimation of Nusselt Number and Effectiveness of Double-Pipe Heat Exchanger with Al2O3−, CuO−, TiO2−, and ZnO−Water Based Nanofluids. Heat Transf. 2020, 49, 2228–2247. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F. Heat Transfer Performance of Two Oil-Based Nanofluids Containing ZnO and MgO Nanoparticles; a Comparative Experimental Investigation. Powder Technol. 2019, 343, 296–308. [Google Scholar] [CrossRef]
- Charalampakos, V.P.; Peppas, G.D.; Pyrgioti, E.C.; Bakandritsos, A.; Polykrati, A.D.; Gonos, I.F. Dielectric Insulation Characteristics of Natural Ester Fluid Modified by Colloidal Iron Oxide Ions and Silica Nanoparticles. Energies 2019, 12, 3259. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.E.; El-Behiry, S.M.; Hussien, A.A.; Izzularab, M.A.; Abd-Elhady, A.M. Breakdown Voltage and Thermal Performance of Nanofilled Transformer Oil Considering Natural and Forced Cooling Systems. IET Gener. Transm. Distrib. 2021, 15, 339–346. [Google Scholar] [CrossRef]
- Kotia, A.; Rajkhowa, P.; Rao, G.S.; Ghosh, S.K. Thermophysical and Tribological Properties of Nanolubricants: A Review. Heat Mass Transf. 2018, 54, 3493–3508. [Google Scholar] [CrossRef]
- Alves, S.; Barros, B.; Trajano, M.F.; Ribeiro, K.; Moura, E. Tribological Behavior of Vegetable Oil-Based Lubricants with Nanoparticles of Oxides in Boundary Lubrication Conditions. Tribol. Int. 2013, 65, 28–36. [Google Scholar] [CrossRef]
- Olmo, C.; Méndez, C.; Quintanilla, P.J.; Ortiz, F.; Renedo, C.J.; Ortiz, A. Mineral and Ester Nanofluids as Dielectric Cooling Liquid for Power Transformers. Nanomaterials 2022, 12, 2723. [Google Scholar] [CrossRef]
- Hornak, J.; Trnka, P.; Kadlec, P.; Michal, O.; Mentlík, V.; Šutta, P.; Csányi, G.M.; Tamus, Z.Á. Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties. Nanomaterials 2018, 8, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Zhou, Y.; Yuan, C.; Wang, W.; Hu, J.; Li, Q.; He, J. Surface-Modification Effect of MgO Nanoparticles on the Electrical Properties of Polypropylene Nanocomposite. High Volt. 2020, 5, 249–255. [Google Scholar] [CrossRef]
- Khodair, Z.T.; Khadom, A.A.; Jasim, H.A. Corrosion Protection of Mild Steel in Different Aqueous Media via Epoxy/Nanomaterial Coating: Preparation, Characterization and Mathematical Views. J. Mater. Res. Technol. 2019, 8, 424–435. [Google Scholar] [CrossRef]
- Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green Synthesis of Magnesium Oxide Nanoparticles and Its Applications: A Review. Sustain. Chem. Pharm. 2021, 19, 100368. [Google Scholar] [CrossRef]
- Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes. Int. J. Nanosci. 2018, 17, 1760018. [Google Scholar] [CrossRef]
- Judran, H.K.; Tuaamah Al-Hasnawi, A.G.; Al Zubaidi, F.N.; Al-Maliki, W.A.K.; Alobaid, F.; Epple, B. A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique. Appl. Sci. 2022, 12, 2655. [Google Scholar] [CrossRef]
- Żyła, G. Viscosity and Thermal Conductivity of MgO–EG Nanofluids. J. Therm. Anal. Calorim. 2017, 129, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Asifa; Anwar, T.; Kumam, P.; Muhammad, S. New Fractional Model to Analyze Impacts of Newtonian Heating, Shape Factor and Ramped Flow Function on MgO–SiO2–Kerosene Oil Hybrid Nanofluid. Case Stud. Therm. Eng. 2022, 38, 102361. [Google Scholar] [CrossRef]
- Thomas, P. Breakdown Voltage and Gassing Tendency of Synthetic Esters Based MgO Nanofluids. In Proceedings of the 4th International Conference on Condition Assessment Techniques in Electrical Systems, CATCON 2019, Chennai, India, 21–23 November 2019. [Google Scholar]
- Emara, M.M.; Peppas, G.D.; Tsovilis, T.E.; Pyrgioti, E.C.; Gonos, I.F. Lightning Impulse Performance of Natural Ester Oil Based Nanofluid with Magnesium Oxide Nanoparticles. In Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021), Xian, China, 21–26 November 2021; Volume 2021, pp. 1593–1596. [Google Scholar]
- Emara, M.M.; Tegopoulos, S.N.; Pyrgioti, E.C.; Peppas, G.D.; Kyritsis, A.; Tsovilis, T.E.; Gonos, I.F. Dielectric and Thermal Performance of Natural Ester Oil Based Nanofluid with Magnesium Oxide Nanoparticles. In Proceedings of the 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL), Sevilla, Spain, 29 May 2022–2 June 2022; pp. 1–6. [Google Scholar]
- Esfe, M.H.; Afrand, M.; Karimipour, A.; Yan, W.M.; Sina, N. An Experimental Study on Thermal Conductivity of MgO Nanoparticles Suspended in a Binary Mixture of Water and Ethylene Glycol. Int. Commun. Heat Mass Transf. 2015, 67, 173–175. [Google Scholar] [CrossRef]
- Gamal, M.; Radwan, M.S.; Elgizawy, I.G.; Shedid, M.H. Experimental Studies on Thermophysical Properties of Ethylene Glycol/Water-Based MgO Nanofluids. J. Phys. Conf. Ser. 2022, 2299, 12022. [Google Scholar] [CrossRef]
- Huang, J.; Liang, G.; Lu, G.; Zhang, J. Conservation of Acidic Papers Using a Dispersion of Oleic Acid-Modified MgO Nanoparticles in a Non-Polar Solvent. J. Cult. Herit. 2018, 34, 61–68. [Google Scholar] [CrossRef]
- Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhou, J.; Li, X.; Zhou, Y.; Tu, Y. Effect of Electron Shallow Trap on Breakdown Performance of Transformer Oil-Based Nanofluids. J. Appl. Phys. 2011, 110, 104104. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, L.; Li, X.; Du, Y.; Zhou, J.; Li, C. Experimental Investigation of Breakdown Strength of Mineral Oil-Based Nanofluids. In Proceedings of the 2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 26–30 June 2011; pp. 1–3. [Google Scholar]
- Yao, W.; Huang, Z.; Li, J.; Wu, L.; Xiang, C. Enhanced Electrical Insulation and Heat Transfer Performance of Vegetable Oil Based Nanofluids. J. Nanomater. 2018, 2018, 4504208. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, M.; Lv, Y.; Li, C. Effect of Shape, Surface Modification and Concentration of Al2O3 Nanoparticles on Breakdown Performance of Transformer Oil. J. Electr. Eng. Technol. 2020, 15, 457–468. [Google Scholar] [CrossRef]
- Rafiq, M.; Yi, K.; Li, C.; Lv, Y.; Numan, M.; Nasir, U. Effect of Fe3O4 Nanoparticle Size on Impulse Breakdown Strength of Mineral Oil-Based Nanofluids. In Proceedings of the 2016 International Conference for Students on Applied Engineering (ICSAE), Newcastle upon Tyne, UK, 20–21 October 2016; pp. 186–189. [Google Scholar]
- Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 435873. [Google Scholar] [CrossRef] [Green Version]
- Yu-Hua, L.; Wei, Q.; Jian-Chao, F. Temperature Dependence of Thermal Conductivity of Nanofluids. Chin. Phys. Lett. 2008, 25, 3319. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, M.; Bala, A.; Kumar, A.; Maithani, R.; Sharma, S.; Alam, T.; Gupta, N.K.; Sharifpur, M. Enhanced Heat Transfer Using Oil-Based Nanofluid Flow through Conduits: A Review. Energies 2022, 15, 8422. [Google Scholar] [CrossRef]
- Simpson, S.; Schelfhout, A.; Golden, C.; Vafaei, S. Nanofluid Thermal Conductivity and Effective Parameters. Appl. Sci. 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
Nanoparticle Type | Purity, % | Surface Area, m2/g | Density, g/m3 | Ca, ppm | K, ppm | Na, ppm |
---|---|---|---|---|---|---|
MgO-20 (av. size 20 nm) | >99 | >60 | 3.58 | 960 | 228 | 1600 |
MgO-50 (av. size 50 nm) | >99.95 | 20 ÷ 50 | 3.58 | 163 | 89 | 228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh, N.V.; Ngoc, N.T.H.; Thuy, D.M.; Tuynh, L.V.; Son, H.H.; Long, N.P. Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles. Coatings 2023, 13, 931. https://doi.org/10.3390/coatings13050931
Thanh NV, Ngoc NTH, Thuy DM, Tuynh LV, Son HH, Long NP. Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles. Coatings. 2023; 13(5):931. https://doi.org/10.3390/coatings13050931
Chicago/Turabian StyleThanh, Nguyen Van, Nguyen Thi Hong Ngoc, Dang Minh Thuy, Luu Van Tuynh, Ha Huu Son, and Nguyen Phi Long. 2023. "Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles" Coatings 13, no. 5: 931. https://doi.org/10.3390/coatings13050931
APA StyleThanh, N. V., Ngoc, N. T. H., Thuy, D. M., Tuynh, L. V., Son, H. H., & Long, N. P. (2023). Highly Improved Dielectric and Thermal Performance of Polyalphaolefin Oil-Based Fluids Using MgO Nanoparticles. Coatings, 13(5), 931. https://doi.org/10.3390/coatings13050931