The Effect of a Yb Co-Dopant on the Blue Upconversion and Thermoluminescent Emission of SrLaAlO4:Yb3+,Tm3+ Phosphors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of and
2.2. Characterization of and Phosphors
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Absorbance and Optical Band Gap of the SrLaAlO4 and SrLaAlO4:Tm, Yb Phosphors
3.3. Upconversion Luminescent Emission of the SLAO:Tm, Yb Phosphors
3.4. The TL Emission of the SLAO:Tm,Yb Phosphors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.-M.; Gan, W.-J.; Lou, S.-Q.; Zou, R.; Tang, Q.; Wang, C.-X.; Jiao, J.; Wang, J. X-ray-activated, UVA persistent luminescent materials based on Bi-doped SrLaAlO4 for deep-Seated photodynamic activation. J. Appl. Phys. 2021, 129, 120901. [Google Scholar] [CrossRef]
- Pirri, A.; Maksimov, R.N.; Li, J.; Vannini, M.; Toci, G. Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials 2022, 15, 2084. [Google Scholar] [CrossRef]
- Gao, W.; Ge, W.; Shi, J.; Chen, X.; Li, Y. A novel upconversion optical thermometers derived from non-thermal coupling levels of CaZnOS:Tm/Yb phosphors. J. Solid State Chem. 2021, 297, 122063. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease III-Powered DNA Walker for Near-Infrared Light Responsive Biosensor. Anal. Chem. 2019, 92, 1470–1476. [Google Scholar] [CrossRef]
- Saidi, K.; Dammak, M.; Soler-Carracedo, K.; Martín, I.R. A novel optical thermometry strategy based on emission of Tm3+/Yb3+ codoped Na3GdV2O8 phosphors. Dalton Trans. 2022, 51, 5108–5117. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, Y.; Jin, Z. Photon energy loss and management in perovskite solar cells. Energy Rev. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Datt, R.; Bishnoi, S.; Hughes, D.; Mahajan, P.; Singh, A.; Gupta, R.; Arya, S.; Gupta, V.; Tsoi, W.C. Downconversion Materials for Perovskite Solar Cells. Sol. RRL 2022, 6, 2200266. [Google Scholar] [CrossRef]
- Lin, Z.-L.; Zeng, H.-J.; Zhang, G.; Xue, W.-Z.; Pan, Z.; Lin, H.; Loiko, P.; Liang, H.-C.; Petrov, V.; Mateos, X.; et al. Kerr-lens mode-locked Yb:SrLaAlO4 laser. Opt. Express 2021, 29, 42837. [Google Scholar] [CrossRef]
- Petit, P.; Petit, J.; Goldner, P.; Viana, B. Inhomogeneous broadening of optical transitions in Yb:CaYAlO4. Opt. Mater. 2008, 30, 1093–1097. [Google Scholar] [CrossRef]
- Sehrawat, P.; Khatkar, A.; Boora, P.; Hooda, A.; Kumar, M.; Malik, R.K.; Khatkar, S.P.; Taxak, V.B. A novel strategy for high color purity virescent Er3+-doped SrLaAlO4 nanocrystals for solid-state lighting applications. J. Mater. Sci. Mater. Electron. 2020, 31, 6072–6083. [Google Scholar] [CrossRef]
- Sehrawat, P.; Khatkar, A.; Boora, P.; Kumar, M.; Malik, R.; Khatkar, S.; Taxak, V. Emanating cool white light emission from novel down-converted SrLaAlO4:Dy3+ nanophosphors for advanced optoelectronic applications. Ceram. Int. 2020, 46, 16274–16284. [Google Scholar] [CrossRef]
- Garcia, C.R.; Oliva, J.; Carranza, J.; Mtz-Enriquez, A.I.; Hdz-Garcia, H.M.; Santibañez, A.; Chavez, D. Green Upconversion of a SrLaAlO4:Yb,Er Phosphor and Its Application for LED Illumination. J. Electron. Mater. 2022, 52, 1357–1365. [Google Scholar] [CrossRef]
- Loiko, P.; Druon, F.; Georges, P.; Viana, B.; Yumashev, K. Thermo-optic characterization of Yb:CaGdAlO_4 laser crystal. Opt. Mater. Express 2014, 4, 2241–2249. [Google Scholar] [CrossRef]
- Huang, X.; He, C.; Wen, X.; Huang, Z.; Liu, Y.; Fang, M.; Wu, X.; Min, X. Preparation, structure, luminescence properties of terbium doped perovskite-like structure green-emitting phosphors SrLaAlO4:Tb3+. Opt. Mater. 2019, 95, 109191. [Google Scholar] [CrossRef]
- Sankarasubramanian, K.; Devakumar, B.; Annadurai, G.; Sun, L.; Zeng, Y.-J.; Huang, X. Novel SrLaAlO4:Mn4+deep-red emitting phosphors with excellent responsiveness to phytochrome PFRfor plant cultivation LEDs: Synthesis, photoluminescence properties, and thermal stability. RSC Adv. 2018, 8, 30223–30229. [Google Scholar] [CrossRef]
- Jacob, L.A.; Sisira, S.; Mani, K.P.; Thomas, K.; Alexander, D.; Biju, P.; Unnikrishnan, N.; Joseph, C. High purity blue photoluminescence in thulium activated α-Na3Y(VO4)2 nanocrystals via host sensitization. J. Lumin. 2020, 223, 117169. [Google Scholar] [CrossRef]
- Hua, Y.; Yu, J.S. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination. J. Mater. Sci. Technol. 2020, 54, 230–239. [Google Scholar] [CrossRef]
- Etafo, N.; Oliva, J.; Garcia, C.; Mtz-Enríquez, A.; Ruiz, J.; Avalos-Belmontes, F.; Lopez-Badillo, C.; Gomez-Solis, C. Enhancing of the blue/NIR emission of novel BaLaAlO4:Yb3+(X mol%),Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (X = 0.5 to 6). Inorg. Chem. Commun. 2022, 137, 109192. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, T.-M.; Cheng, B.-M. Luminescence Investigation on Ultraviolet-Emitting Rare-Earth-Doped Phosphors Using Synchrotron Radiation. Inorg. Chem. 2011, 50, 6552–6556. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+. Materials 2021, 14, 2901. [Google Scholar] [CrossRef]
- Yue, C.; Pu, Y.; Zhu, D.; Yan, Q. A novel green-emitting SrLaAlO4:Er3+ phosphor synthesized by co-precipitation method for w-LEDs and optical thermometry. J. Mater. Sci. Mater. Electron. 2021, 32, 4228–4238. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Zhuo, Y.; Xiong, D.; Chen, M. Gradient refractive index structure of phosphor-in-glass coating for packaging of white LEDs. J. Am. Ceram. Soc. 2018, 102, 1677–1685. [Google Scholar] [CrossRef]
- Goud, K.; Ramesh, C.; Rao, A. Spectroscopic Properties and Energy Transfer in Lead Bismuth Gallium Borate Glasses Codoped with Tm3+ and Yb3+. Int. J. Eng. Res. Technol. 2017, 6, 2278-0181. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Deng, J.; Wang, J.; Ni, S. Highly efficient Yb3+/Tm3+ co-doped NaYF4 nanotubes: Synthesis and intense ultraviolet to infrared up-conversion luminescence. Opt. Commun. 2014, 312, 43–46. [Google Scholar] [CrossRef]
- Etafo, N.O.; Carranza, J.O.; Garcia, C.E.R.; Oliva, J.; Viesca-Villanueva, E.; Hernández-Hernández, E.; Santibañez, A.; Gomez-Zavala, O. Blue/NIR-emitting Phosphor Based on Sr2CeO4: Tm3+, Yb3+ Obtained by Combustion Synthesis. Mater. Sci. 2023, 1–6, in press. [Google Scholar] [CrossRef]
- Dan, H.K.; Tap, T.D.; Vinh, H.X.; Ty, N.M.; Vinh, L.; Zhou, D.; Qiu, J. Enhanced red upconversion emission and energy transfer of Tm3+/Cr3+/Yb3+ tri-doped transparent fluorosilicate glass-ceramics. J. Non-Crystalline Solids 2020, 535, 119885. [Google Scholar] [CrossRef]
- Wang, Z.; Meijerink, A. Concentration Quenching in Upconversion Nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306. [Google Scholar] [CrossRef]
- Li, L.; Lin, H.; Zhao, X.; Wang, Y.; Zhou, X.; Ma, C.; Wei, X. Effect of Yb3+ concentration on upconversion luminescence in Yb3+, Tm3+ co-doped Lu2O3 nanophosphors. J. Alloy Compd. 2013, 586, 555–560. [Google Scholar] [CrossRef]
- Chung, J.H.; Ryu, J.H.; Lee, S.Y.; Kang, S.H.; Shim, K.B. Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4. Ceram. Int. 2012, 39, 1951–1956. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2014, 44, 1379–1415. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; La, H.; Zhu, R.; El-Banna, G.; Wei, Y.; Han, G. Upconverting NIR Photons for Bioimaging. Nanomaterials 2015, 5, 2148–2168. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Rai, V.K. NIR to blue light upconversion in Tm3+/Yb3+ codoped BaTiO3 tellurite glass. AIP Conf. Proc. 2015, 1661, 100006. [Google Scholar] [CrossRef]
- Baldacchini, G.; Davidson, A.T.; Kalinov, V.S.; Kozakiewicz, A.G.; Montereali, R.M.; Nichelatti, E.; Voitovich, A.P. Thermoluminescence of pure LiF crystals and color centers. J. Lumin. 2007, 122–123, 371–373. [Google Scholar] [CrossRef]
- Pathak, N.; Sanyal, B.; Gupta, S.K.; Kadam, R.M. MgAl2O4 both as short and long persistent phosphor material: Role of antisite defect centers in determining the decay kinetics. Solid State Sci. 2018, 88, 13–19. [Google Scholar] [CrossRef]
- Ding, J.; Lian, Z.; Li, Y.; Wang, S.; Yan, Q. The Role of Surface Defects in Photoluminescence and Decay Dynamics of High-Quality Perovskite MAPbI3 Single Crystals. J. Phys. Chem. Lett. 2018, 9, 4221–4226. [Google Scholar] [CrossRef]
- Gavrilović, T.V.; Nikolic, M.; Jovanović, D.J.; Dramićanin, M.D. Up-conversion luminescence of Tm3+sensitized by Yb3+ions in GdVO4. Phys. Scr. 2013, T157, 014055. [Google Scholar] [CrossRef]
- Halubek-Gluchowska, K.; Szymański, D.; Tran, T.N.L.; Ferrari, M.; Lukowiak, A. Upconversion Luminescence of Silica–Calcia Nanoparticles Co-doped with Tm3+ and Yb3+ Ions. Materials 2021, 14, 937. [Google Scholar] [CrossRef]
- Mayhugh, M.R.; Christy, R.W.; Johnson, N.M. Thermoluminescence and Color Center Correlations in Dosimetry LiF. J. Appl. Phys. 1970, 41, 2968–2976. [Google Scholar] [CrossRef]
- Pérez-Cruz, L.; Cruz-Zaragoza, E.; Díaz, D.; Alcántara, J.H.; García, E.C.; Sánchez, H.M. Synthesis, optical and thermoluminescence properties of thulium-doped KMgF3 fluoroperovskite. Appl. Radiat. Isot. 2021, 177, 109913. [Google Scholar] [CrossRef]
- Roman-Lopez, J.; Correcher, V.; Garcia-Guinea, J.; Rivera, T.; Lozano, I. Cathodoluminescence and green-thermoluminescence response of CaSO4:Dy,P films. J. Lumin- 2013, 135, 89–92. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Sharmila, K.; Kumaraswamy, S.; Somashekarappa, H.; Sayyed, M.; Al-Ghamdi, H.; Almuqrin, A.H.; Kamath, S.D. An examination of the radiation-induced defects and thermoluminescence characteristics of Sm2O3 doped BaO–ZnO–LiF–B2O3 glass system for γ-dosimetry application. Opt. Mater. 2021, 118, 111252. [Google Scholar] [CrossRef]
- Singh, M.N.; Singh, L.R.; Barua, A.G. Effects of doping concentration on thermoluminescence parameters of CaAl2O4:Re3+ (Re3+ = Dy3+, Sm3+, Tm3+) prepared by combustion method. Radiat. Phys. Chem. 2021, 188, 109631. [Google Scholar] [CrossRef]
- Środa, M.; Świontek, S.; Gieszczyk, W.; Bilski, P. The effect of CeO2 on the thermal stability, structure and thermoluminescence and optically stimulated luminescence properties of barium borate glass. J. Non-Crystalline Solids 2019, 517, 61–69. [Google Scholar] [CrossRef]
- Viesca-Villanueva, E.; Oliva, J.; Chavez, D.; Lopez-Badillo, C.; Gomez-Solis, C.; Mtz-Enriquez, A.; Garcia, C. Effect of Yb3+ codopant on the upconversion and thermoluminescent emission of Sr2CeO4:Er3+, Yb3+ phosphors. J. Phys. Chem. Solids 2020, 145, 109547. [Google Scholar] [CrossRef]
- Dewangan, P.; Bisen, D.; Brahme, N.; Tamrakar, R.K.; Upadhyay, K.; Sharma, S.; Sahu, I.P. Studies on thermoluminescence properties of alkaline earth silicate phosphors. J. Alloy Compd. 2018, 735, 1383–1388. [Google Scholar] [CrossRef]
- Ukare, R.S.; Dubey, V.; Zade, G.D.; Dhoble, S.J. PL Properties of Sr2CeO4 with Eu3+ and Dy3+ for Solid State Lighting Prepared by Precipitation Method. J. Fluoresc. 2016, 26, 791–806. [Google Scholar] [CrossRef]
- Nag, A.; Kutty, T.R.N. Photoluminescence of Sr2-xLnxCeO4+x/2 (Ln=Eu, Sm or Yb) prepared by a wet chemical method. J. Mater. Chem. 2003, 13, 370–376. [Google Scholar] [CrossRef]
- Chen, R. Glow Curves with General Order Kinetics. J. Electrochem. Soc. 1969, 116, 1254–1257. [Google Scholar] [CrossRef]
Sample | a (Å) | b (Å) | c (Å) | Volume (Å3) | Crystallite Size (nm) |
---|---|---|---|---|---|
SLAO | 3.7504 | 3.7504 | 12.669 | 178.196 | 17.38 |
SLAO1 | 3.7377 | 3.7377 | 12.615 | 176.991 | 16.95 |
SLAO3 | 3.7435 | 3.7435 | 12.600 | 176.574 | 14.22 |
SLAO5 | 3.7433 | 3.7433 | 12.541 | 175.728 | 13.04 |
SLAO6 | 3.7435 | 3.7435 | 12.517 | 176.411 | 12.02 |
PEAK | Activation Energy, E (EV) | Frequency Factor (S) (S−1) | |
---|---|---|---|
SLAO6 | 1 | 0.566 | 8.68 × 106 |
2 | 0.429 | 1.84 × 104 | |
3 | 0.689 | 9.26 × 105 | |
SLAO3 | 1 | 0.616 | 1.26 × 107 |
2 | 0.424 | 1.05 × 104 | |
SLAO1 | 1 | 0.549 | 1.15 × 106 |
2 | 0.414 | 2.80 × 103 | |
SLAO | 1 | 0.446 | 6.48 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etafo, N.O.; Rodriguez Garcia, C.; Esquivel-Castro, T.A.; León-Madrid, M.I.; Santibañez, A.; Oliva, J. The Effect of a Yb Co-Dopant on the Blue Upconversion and Thermoluminescent Emission of SrLaAlO4:Yb3+,Tm3+ Phosphors. Coatings 2023, 13, 1003. https://doi.org/10.3390/coatings13061003
Etafo NO, Rodriguez Garcia C, Esquivel-Castro TA, León-Madrid MI, Santibañez A, Oliva J. The Effect of a Yb Co-Dopant on the Blue Upconversion and Thermoluminescent Emission of SrLaAlO4:Yb3+,Tm3+ Phosphors. Coatings. 2023; 13(6):1003. https://doi.org/10.3390/coatings13061003
Chicago/Turabian StyleEtafo, Nelson Oshogwue, Carlos Rodriguez Garcia, Tzipatly A. Esquivel-Castro, Manuel I. León-Madrid, Alejandro Santibañez, and Jorge Oliva. 2023. "The Effect of a Yb Co-Dopant on the Blue Upconversion and Thermoluminescent Emission of SrLaAlO4:Yb3+,Tm3+ Phosphors" Coatings 13, no. 6: 1003. https://doi.org/10.3390/coatings13061003
APA StyleEtafo, N. O., Rodriguez Garcia, C., Esquivel-Castro, T. A., León-Madrid, M. I., Santibañez, A., & Oliva, J. (2023). The Effect of a Yb Co-Dopant on the Blue Upconversion and Thermoluminescent Emission of SrLaAlO4:Yb3+,Tm3+ Phosphors. Coatings, 13(6), 1003. https://doi.org/10.3390/coatings13061003