Ca–Zn Phosphate Conversion Coatings Deposited on Ti6Al4V for Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
3. Results and Discussion
3.1. Characterization of the Ca–Zn Phosphate Layer
3.2. Corrosion Characteristics
3.3. Surface Wettability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving Biocompatibility for next Generation of Metallic Implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- de Viteri, V.S.; Fuentes, E.; de Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. Tribol.—Fundam. Adv. 2013, 1, 154–181. [Google Scholar] [CrossRef]
- Sidambe, A.T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials 2014, 7, 8168. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.S.; Agrelli, A.; Andrade, A.N.; Mendes-Marques, C.L.; Arruda, I.R.S.; Santos, L.R.L.; Vasconcelos, N.F.; Machado, G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. Materials 2022, 15, 3150. [Google Scholar] [CrossRef] [PubMed]
- Kuji, C.; Soyama, H. Mechanical Surface Treatment of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering Using Laser Cavitation. Metals 2023, 13, 181. [Google Scholar] [CrossRef]
- Tsuji, A.; Jia, P.; Takizawa, M.; Murata, J. Improvement in the Polishing Characteristics of Titanium-Based Materials Using Electrochemical Mechanical Polishing. Surf. Interfaces 2022, 35, 102490. [Google Scholar] [CrossRef]
- Xue, T.; Attarilar, S.; Liu, S.; Liu, J.; Song, X.; Li, L.; Zhao, B.; Tang, Y. Surface Modification Techniques of Titanium and Its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front. Bioeng. Biotechnol. 2020, 8, 1261. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed. Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef]
- Doe, Y.; Ida, H.; Seiryu, M.; Deguchi, T.; Takeshita, N.; Sasaki, S.; Sasaki, S.; Irie, D.; Tsuru, K.; Ishikawa, K.; et al. Titanium Surface Treatment by Calcium Modification with Acid-Etching Promotes Osteogenic Activity and Stability of Dental Implants. Materialia 2020, 12, 100801. [Google Scholar] [CrossRef]
- Albrektsson, T.; Lekholm, U. Osseointegration: Current State of the Art. Dent. Clin. N. Am. 1989, 33, 537–554. [Google Scholar] [CrossRef]
- Satomi, K.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue Response to Implanted Ceramic-Coated Titanium Alloys in Rats. J. Oral. Rehabil. 1988, 15, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, H.; Chen, C.; Zhao, Z. Review of the Biocompatibility of Micro-Arc Oxidation Coated Titanium Alloys. Mater. Des. 2015, 85, 640–652. [Google Scholar] [CrossRef]
- Jaafar, A.; Schimpf, C.; Mandel, M.; Hecker, C.; Rafaja, D.; Krüger, L.; Arki, P.; Joseph, Y. Sol–Gel Derived Hydroxyapatite Coating on Titanium Implants: Optimization of Sol–Gel Process and Engineering the Interface. J. Mater. Res. 2022, 37, 2558–2570. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Chin, W.H.; Chien, C.S.; Hsieh, Y.H. Mechanical and Biological Properties of Graded Porous Tantalum Coatings Deposited on Titanium Alloy Implants by Vacuum Plasma Spraying. Surf. Coat Technol. 2019, 372, 399–409. [Google Scholar] [CrossRef]
- León, M.; Alvarez, D.; Valarezo, A.; Bejarano, L.; Viteri, D.; Giraldo-Betancur, A.L.; Muñoz-Saldaña, J.; Alvarez-Barreto, J. Electrodeposition of Chitosan on Ti-6Al-4V Surfaces: A Study of Process Parameters. Mater. Res. 2022, 25, e20210552. [Google Scholar] [CrossRef]
- Sharma, A. Hydroxyapatite Coating Techniques for Titanium Dental Implants—An Overview. Qeios 2023. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yoshimura, M. Biocompatible Hydroxyapatite Ceramic Coating on Titanium Alloys by Electrochemical Methods via Growing Integration Layers [GIL] Strategy: A Review. Ceram Int. 2023, in press. [Google Scholar] [CrossRef]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Gofer, Y.; Borodianskiy, K.; Sobolev, A. Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte. Materials 2022, 15, 7374. [Google Scholar] [CrossRef]
- Kurup, A.; Dhatrak, P.; Khasnis, N. Surface Modification Techniques of Titanium and Titanium Alloys for Biomedical Dental Applications: A Review. Mater. Today Proc. 2021, 39, 84–90. [Google Scholar] [CrossRef]
- Shenhar, A.; Gotman, I.; Radin, S.; Ducheyne, P.; Gutmanas, E.Y. Titanium Nitride Coatings on Surgical Titanium Alloys Produced by a Powder Immersion Reaction Assisted Coating Method: Residual Stresses and Fretting Behavior. Surf. Coat. Technol. 2000, 126, 210–218. [Google Scholar] [CrossRef]
- Gabor, R.; Cvrček, L.; Doubková, M.; Nehasil, V.; Hlinka, J.; Unucka, P.; Buřil, M.; Podepřelová, A.; Seidlerová, J.; Bačáková, L. Hybrid Coatings for Orthopaedic Implants Formed by Physical Vapour Deposition and Microarc Oxidation. Mater. Des. 2022, 219, 110811. [Google Scholar] [CrossRef]
- Pesode, P.; Barve, S. Surface Modification of Titanium and Titanium Alloy by Plasma Electrolytic Oxidation Process for Biomedical Applications: A Review. Mater. Today Proc. 2021, 46, 594–602. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M. Electrochemical Phosphate Conversion Coatings: A Review. Surf. Rev. Lett. 2017, 24, 1730003. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Evaluation of the Corrosion Resistance of Phosphate Coatings Deposited on the Surface of the Carbon Steel Used for Carabiners Manufacturing. Appl. Sci. 2020, 10, 2753. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.-P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Phosphate Surface Treatment for Improving the Corrosion Resistance of the C45 Carbon Steel Used in Carabiners Manufacturing. Materials 2020, 13, 3410. [Google Scholar] [CrossRef]
- Zhao, D.W.; Liu, C.; Zuo, K.Q.; Su, P.; Li, L.B.; Xiao, G.Y.; Cheng, L. Strontium-Zinc Phosphate Chemical Conversion Coating Improves the Osseointegration of Titanium Implants by Regulating Macrophage Polarization. Chem. Eng. J. 2021, 408, 127362. [Google Scholar] [CrossRef]
- Zhao, D.W.; Zuo, K.Q.; Wang, K.; Sun, Z.Y.; Lu, Y.P.; Cheng, L.; Xiao, G.Y.; Liu, C. Interleukin-4 Assisted Calcium-Strontium-Zinc-Phosphate Coating Induces Controllable Macrophage Polarization and Promotes Osseointegration on Titanium Implant. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111512. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, G.; Lu, Y. Effect of PH on the Phase Composition and Corrosion Characteristics of Calcium Zinc Phosphate Conversion Coatings on Titanium. J. Electrochem. Soc. 2016, 163, C477–C485. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, G.Y.; Chen, C.Z.; Lu, Y.P.; Geng, X.W. Hopeite and Scholzite Coatings Formation on Titanium via Wet-Chemical Conversion with Controlled Temperature. Surf. Coat. Technol. 2020, 384, 125330. [Google Scholar] [CrossRef]
- Zhao, X.C.; Dong, S.F.; Ge, B.; Huang, B.X.; Ma, J.; Chen, H.; Hao, X.H.; Wang, C.Z. Effects of Temperature and Voltage on Formation of Electrolysis Induced Chemical Conversion Coating on Titanium Surface. Surf. Coat. Technol. 2018, 354, 330–341. [Google Scholar] [CrossRef]
- Liu, B.; Shi, X.M.; Xiao, G.Y.; Lu, Y.P. In-Situ Preparation of Scholzite Conversion Coatings on Titanium and Ti-6Al-4V for Biomedical Applications. Colloids Surf. B Biointerfaces 2017, 153, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Burduhos-Nergis, D.P.; Bejinariu, C.; Sandu, A.V. Phosphate Coatings Suitable for Personal Protective Equipment; Materials Research Forum LLC: Millersville, PA, USA, 2021; Volume 89, ISBN 9781644901113. [Google Scholar]
- Axinte, M.; Vizureanu, P.; Cimpoesu, N.; Nejneru, C.; Burduhos-Nergis, D.P.; Epure, E.L. Analysis of Physicochemical Properties of W1.8507 Steel Parts with Sharp Edges, Thermochemically Treated by Plasma Nitriding with and without Polarized Screens. Coatings 2023, 13, 177. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Xiao, G.Y.; Zhao, X.C.; Zhang, X.; Xu, W.H.; Lu, Y.P. Electric Field Induced Rapid Formation of Novel Structural Hopeite Coating on Titanium. Mater. Lett. 2015, 144, 30–32. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; He, N.; Fu, Q.; Feng, M.; Li, Q.; Wang, Q.; Liu, X.; Xiao, S.; Jin, W.; et al. In Situ Growth of Ca-Zn-P Coatings on the Zn-Pretreated WE43 Mg Alloy to Mitigate Corrosion and Enhance Cytocompatibility. Colloids Surf. B Biointerfaces 2022, 218, 112798. [Google Scholar] [CrossRef]
- Zhao, X.C.; Xiao, G.Y.; Zhang, X.; Wang, H.Y.; Lu, Y.P. Ultrasonic Induced Rapid Formation and Crystal Refinement of Chemical Conversed Hopeite Coating on Titanium. J. Phys. Chem. C 2014, 118, 1910–1918. [Google Scholar] [CrossRef]
- Alleborn, N.; Raszillier, H. Spreading and Sorption of a Droplet on a Porous Substrate. Chem. Eng. Sci. 2004, 59, 2071–2088. [Google Scholar] [CrossRef]
- Trisnanto, S.R.; Setiawan, I.; Sunnardianto, G.K.; Triawan, F. Stearic Acid-Modified CuO Coating Metal Surface with Superhydrophobicity and Anti-Corrosion Properties. J. Eng. Res. 2019, 2019, 63–75. [Google Scholar]
- Annamalai, M.; Gopinadhan, K.; Han, S.A.; Saha, S.; Park, H.J.; Cho, E.B.; Kumar, B.; Patra, A.; Kim, S.W.; Venkatesan, T. Surface Energy and Wettability of van Der Waals Structures. Nanoscale 2016, 8, 5764–5770. [Google Scholar] [CrossRef]
Element | Al | V | Fe | O | C | Ti |
---|---|---|---|---|---|---|
wt.% | 6.14 | 4.22 | 0.12 | 0.11 | 0.028 | bal. |
Sample | Corrosive Media | Ecorr mV | Icorr µA/cm2 | βa mV/dec. | βc mV/dec. | Rp kΩ·cm2 | CR µm/Year |
---|---|---|---|---|---|---|---|
Ti6Al4V | Dulbecco | −177 | 0.63 | 172 | −270 | 87.8 | 13.15 |
Ca–Zn | −95 | 0.02 | 53 | −131 | 419.5 | 0.46 | |
Ti6Al4V | Ringer | −448 | 0.86 | 100 | −106 | 17.9 | 18.03 |
Ca–Zn | −213 | 0.04 | 38 | −59 | 101.1 | 0.95 |
No. | Solution | Contact Angle (°) |
---|---|---|
1 | Water | 58.3 ± 2.1 |
2 | Ringer solution | 56.0 ± 5.2 |
3 | Dulbecco solution | 68.5 ± 5.2 |
4 | Ethylene glycol | 34.5 ± 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burduhos-Nergis, D.-P.; Cimpoesu, N.; Epure, E.-L.; Istrate, B.; Burduhos-Nergis, D.-D.; Bejinariu, C. Ca–Zn Phosphate Conversion Coatings Deposited on Ti6Al4V for Medical Applications. Coatings 2023, 13, 1029. https://doi.org/10.3390/coatings13061029
Burduhos-Nergis D-P, Cimpoesu N, Epure E-L, Istrate B, Burduhos-Nergis D-D, Bejinariu C. Ca–Zn Phosphate Conversion Coatings Deposited on Ti6Al4V for Medical Applications. Coatings. 2023; 13(6):1029. https://doi.org/10.3390/coatings13061029
Chicago/Turabian StyleBurduhos-Nergis, Diana-Petronela, Nicanor Cimpoesu, Elena-Luiza Epure, Bogdan Istrate, Dumitru-Doru Burduhos-Nergis, and Costica Bejinariu. 2023. "Ca–Zn Phosphate Conversion Coatings Deposited on Ti6Al4V for Medical Applications" Coatings 13, no. 6: 1029. https://doi.org/10.3390/coatings13061029
APA StyleBurduhos-Nergis, D.-P., Cimpoesu, N., Epure, E.-L., Istrate, B., Burduhos-Nergis, D.-D., & Bejinariu, C. (2023). Ca–Zn Phosphate Conversion Coatings Deposited on Ti6Al4V for Medical Applications. Coatings, 13(6), 1029. https://doi.org/10.3390/coatings13061029