Multiplier Effects of Photodetectors—Source of Gain
Abstract
:1. Introduction
2. Performance Parameters and Physical Mechanism of Photomultiplier Detector
2.1. Performance Parameters
2.1.1. Responsivity (R)
2.1.2. Response Time (τ)
2.1.3. Detectivity (D*)
2.1.4. On/Off Ratio
2.1.5. External Quantum Efficiency (EQE)
2.1.6. Photogain (G)
2.2. Multiple Exciton Generation
2.3. Semiconductor Avalanche Effect
2.4. External Circuit Carrier Injection Organic Photomultiplier Effect
2.5. External Grid Control Mechanism
2.6. Regulation Effect of Micro–Nano Structure
2.7. Singlet Fission Effect
3. Classification of Photomultiplier Detectors
3.1. Traditional Inorganic Photomultiplier Detector
3.2. Organic Photomultiplier Detectors
3.3. Two-Dimensional Material Photomultiplier Detectors (2D PMDs)
3.4. Organic/Inorganic Heterojunction Photomultiplier Detector
4. Performance Optimization of Photomultiplier Detector
4.1. Improve the EQE of Devices
4.2. Reduce Dark Current
4.3. Adjust Response Speed
4.4. Adjust the Spectrum
5. Conclusions and Challenges
- Analysis of gain mechanisms remains incomplete, and many sources of high-EQE device efficiency are still unclear.
- There are still many problems in determining whether newly discovered effects can be applied to the fabrication of actual devices, which will require further research to resolve.
- The response speed of reported photomultiplier detectors was found to be mostly in the order of milliseconds, which cannot meet the needs of high-speed photodetectors. How we can further improve the response speed of photomultiplier devices also needs to be further studied.
- The stability of the device was not discussed in most existing work, and solving the stability problem is a key factor that must be overcome in the application of the device.
- The introduction of a metal micro–nano structure has achieved great success in the field of solar cells. However, whether introducing a metal micro–nano structure into the photomultiplier detector would significantly improve device performance remains to be determined in future studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behura, S.; Wang, C.; Wen, Y.; Berry, V. Graphene-semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 2019, 13, 312–318. [Google Scholar] [CrossRef]
- Pospischil, A.; Humer, M.; Furch, M.; Bchmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896. [Google Scholar] [CrossRef]
- Huang, Z.; Ji, C.; Cheng, L.; Han, J.; Yang, M.; Wei, X.; Jiang, Y.; Wang, J. Zero-bias visible to near-infrared horizontal p-n-p TiO2 nanotubes doped monolayer graphene photodetector. Molecules 2019, 24, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Yang, M.; Zhang, J.; Yang, M.; Wang, J.; Zheng, H.; Gou, J. Three-dimensional Dirac semimetal/organic thin film heterojunction photodetector with fast response and high detectivity. Front. Phys. 2021, 9, 672591. [Google Scholar] [CrossRef]
- Kang, K.; Li, T.; Sohn, E.; Shan, J.; Mak, K. Nonlinear anomalous hall effect in few-layer WTe2. Nat. Photonics 2019, 18, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Liu, Y.; Yu, A.; Zhang, Y.; Liu, C.; Liu, J.; Wu, W.; Zhang, K.; Shi, X.; Kou, J.; et al. Flexible self-powered GaN ultraviolet photoswitch with Piezo-phototronic effect enhanced on/off ratio. ACS Nano 2016, 10, 1572–1579. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2015, 24, 7373–7380. [Google Scholar] [CrossRef]
- Xu, L.; Wu, H.; Yao, G.; Chen, L.; Yang, X.; Chen, B.; Huang, X.; Zhong, W.; Chen, X.; Yin, Z.; et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 2018, 12, 10262–10271. [Google Scholar] [CrossRef]
- Pei, Z.; Zhu, M.; Huang, Y.; Huang, Y.; Xue, Q.; Geng, H.; Zhi, C. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes. Nano Energy 2016, 20, 254–263. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Yang, M.; Kong, X.; Chen, X.; Huang, Z.; Guo, H.; Gou, J.; Tao, S.; Liu, Z.; et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse. Adv. Mater. 2018, 2018, 1804020. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, F.; Chen, H.; Zheng, L.; Su, L.; Zhao, D.; Fang, X. An ultrahigh responsivity (9.7 mA W−1) self-powered solar-Blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264. [Google Scholar] [CrossRef]
- Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Wang, B.; Zeng, J.; Fu, Y.; Xu, K. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.H.; Liou, Y.T.; Chuang, C.H.; Lin, S.W.; Tseng, C.Y.; Wang, D.Y.; Chen, C.C.; Hung, W.Y.; Wen, C.Y.; Chen, C.W. Self-crack-filled graphene films by Metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv. Mater. 2015, 27, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Ma, L.; Du, S.; Xu, Y.; Yuan, M.; Fang, H.; Wang, Z.; Xu, M.; Li, D.; Yang, J. Plasmonic silicon quantum dots enabled high-sensitivity ultra-broadband photodetection of graphene-based hybrid phototransistors. ACS Nano 2017, 11, 9854–9862. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Shiue, R.; Gao, Y.; Meric, I.; Heinz, T.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- McIver, J.; Hsieh, D.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. Control over topological insulator Iphs with Light Polarization. Nat. Nanotechnol. 2011, 7, 96–100. [Google Scholar] [CrossRef]
- Lian, Y.; Han, J.; Yang, M.; Peng, S.; Zhang, C.; Han, C.; Zhang, X.; Liu, X.; Zhou, H.; Wang, Y.; et al. Tunable bi-directional photoresponse in hybrid PtSe2−x thin films based on precisely controllable selenization engineering. Adv. Funct. Mater. 2022, 2022, 202205709. [Google Scholar]
- Youngblood, N.; Chen, C.; Koester, S.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wang, X.; Zheng, B.; Qi, Z.; Ma, C.; Fu, Y.; Fu, Y.; Hautzinger, M.P.; Jiang, Y.; Li, Z.; et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996–8003. [Google Scholar] [CrossRef]
- Long, M.; Wang, Y.; Wang, P.; Zhou, X.; Xia, H.; Luo, C.; Huang, S.; Zhang, G.; Yan, H.; Fan, Z.; et al. Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano 2019, 13, 2511–2519. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, J.; Han, J.; Ling, J.; Ji, C.; Kong, X.; Liu, X.; Huang, Z.; Gou, J.; Liu, Z. Enhanced performance of broadband room temperature photodetector based on Cd3As2 thin film/pentacene heterojunction. ACS Photonics 2018, 5, 3438–3445. [Google Scholar] [CrossRef]
- Khanikaev, A.; Shvets, G. Two-dimensional topological photonics. Nat. Photonics 2017, 11, 763–773. [Google Scholar] [CrossRef]
- He, L.; Xiu, F.; Yu, X.; Teague, M.; Jiang, W.; Fan, Y.; Kou, X.; Lang, M.; Wang, Y.; Huang, G.; et al. Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett. 2012, 12, 1486–1490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wang, P.; Li, Z.; Wang, H.; Song, C.; Huang, C.; Chen, Z.; Yang, L.; Zhang, K.; Lu, S.; et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, Q.; Halim, U.; Liu, Y.; Zhu, E.; Lin, Z.; Xiao, H.; Duan, X.; Feng, Z.; Cheng, R.; et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.; An, T.; Lu, G.; Yang, T. Photomultiplication type inverted organic photodetector based on PbS quantum dots. Opt. Mater. 2023, 138, 113722. [Google Scholar] [CrossRef]
- Windischhofer, P.; Riegler, W. Passive quenching, signal shapes, and space charge effects in SPADs and SiPMs. Nucl. Inst. Methods Phys. Res. A 2023, 1045, 167627. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Yuan, X.; Lu, S.; Zhang, J.; Narayan, A.; Liu, Y.; Zhang, H.; Ni, Z.; Liu, R.; et al. Quantum Hall effect based on Weyl Orbits in Cd3As2. Nature 2019, 565, 331–336. [Google Scholar] [CrossRef]
- Maebe, J.; Vandenberghe, S. Effect of detector geometry and surface finish on Cerenkov based time estimation in monolithic BGO detectors. Phys. Med. Biol. 2023, 68, 025009. [Google Scholar] [CrossRef]
- Scott, R.; Jiang, W.; Jamal Deen, M. CMOS time-to-digital converters for biomedical imaging applications. IEEE Rev. Biol. Eng. 2023, 16, 627–651. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Electronic transport in twodimensional materials. Annu. Rev. Phys. Chem. 2018, 69, 299–325. [Google Scholar] [CrossRef] [Green Version]
- Konstantatos, G.; Sargent, E.H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400. [Google Scholar] [CrossRef]
- Sun, Z.H.; Chang, H.X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar] [CrossRef]
- Beck, M.E.; Hersam, M.C. Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 2020, 14, 6498–6518. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, S.; Pace, E.; Rossi, M.C.; Galluzzi, F. Photoelectrical characteristics of diamond UV detectors: Dependence on device design and film quality. Diamond Related Mater. 1997, 6, 361–366. [Google Scholar] [CrossRef]
- Robert, D. McKeag; Richard B Jackman. Diamond UV photodetectors: Sensitivity and speed for visible blind applications. Diamond Related Mater. 1998, 7, 513–518. [Google Scholar]
- Zhou, A.; Velázquez, R.; Wang, X.; Feng, P. Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl. Mater. Interfaces 2019, 11, 38068–38074. [Google Scholar] [CrossRef]
- Borelli, C.; Bosio, A.; Parisini, A.; Pavesi, M.; Vantaggio, S.; Fornari, R. Electronic properties and photo-gain of UV-C photodetectors based on high-resistivity orthorhombic κ-Ga2O3 epilayers. Mater. Sci. Eng. B 2022, 286, 116056. [Google Scholar] [CrossRef]
- Girolami, M.; Bosi, M.; Serpente, V.; Mastellone, M.; Seravalli, L.; Pettinato, S.; Salvatori, S.; Trucchi, D.M.; Fornari, R. Orthorhombic undoped j-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 2023, 11, 3759. [Google Scholar] [CrossRef]
- Mazzolini, P.; Fogarassy, Z.; Parisini, A.; Mezzadri, F.; Diercks, D.; Bosi, M.; Seravalli, L.; Sacchi, A.; Spaggiari, G.; Bersani, D.; et al. Silane-mediated expansion of domains in Si-doped κ-Ga2O3 epitaxy and its impact on the in-plane electronic conduction. Adv. Funct. Mater. 2023, 33, 2207821. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Zhao, Y.; He, L.; Ji, C.; Liu, X.; Zhou, H.; Wu, Z.; Wang, X. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2019, 13, 755–763. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Yang, Y.; Zhang, Q.; Ji, C.; Wu, G.; Su, Y.; Gou, J.; Wu, Z.; Yuan, K.; et al. Ultraviolet to long-wave infrared photodetectors based on a three-dimensional Dirac semimetal/organic thin film heterojunction. J. Phys. Chem. Lett. 2019, 10, 3914–3921. [Google Scholar] [CrossRef]
- Jain, S.K.; Aggarwal, N.; Krishna, S.; Kumar, R.; Husale, S.; Gupta, V.; Gupta, G. GaN-UV photodetector integrated with asymmetric metal semiconductor metal structure for enhanced responsivity. J. Mater. Sci.-Mater. Electron. 2018, 29, 8958–8963. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; Van der Zant, H.S.; Castellanos-Gomez, A. Iph generation with two-dimensional Van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Gabor, N.M.; Alden, J.S.; Van der Zande, A.M.; McEuen, P.L. Photo-thermoelectric at a graphene interface junction. Nano Lett. 2010, 10, 562–566. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mather, J.C. Bolometers: Ultimate sensitivity, optimization, and amplifier coupling. Appl. Opt. 1984, 23, 584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Shimotani, H.; Shang, H.; Kanagasekaran, T.; Zolyomi, V.; Drummond, N.; Fal’ko, V.; Tanigaki, K. High-sensitivity photodetectors based on multilayer GaTe Flakes. ACS Nano 2014, 8, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on Graphene, Other Two-dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Su, W.; Dong, T.; Shen, W. Recent advance in multiple exciton generation in semiconductor nanocrystals. Acta Phys. Sin. 2018, 67, 027302. [Google Scholar]
- Klimov, V.I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635. [Google Scholar] [CrossRef] [PubMed]
- Brus, L. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 2014, 47, 2951–2959. [Google Scholar] [CrossRef]
- Cooney, R.R.; Sewall, S.L.; Anderson, K.E.H.; Dias, E.A.; Kambhampati, P. Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys. Rev. Lett. 2007, 98, 177403. [Google Scholar] [CrossRef] [Green Version]
- Kilina, S.V.; Kilin, D.S.; Prezhdo, O.V. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain density functional theory of charge carrier relaxation. ACS Nano 2008, 3, 93. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, X.; Zhou, H.; Fu, G.; Zhou, X.; Lian, Y.; Hao, J.; Yu, H.; Zhu, X.; Wang, J. In situ preparation of Bi2O2Se/MoO3 thin-film heterojunction array flexible photodetectors. J. Mater. Chem. C 2022, 10, 15377. [Google Scholar] [CrossRef]
- Pijpers, J.; Ulbricht, R.; Tielrooij, K.J.; Osherov, A.; Golan, Y.; Delerue, C.; Allan, G.; Bonn, M. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat. Phys. 2009, 5, 811. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Q.; Wang, F.; Yang, M.; Xie, L.; Zeng, X. Biosafety, nontoxic nanoparticles for VL-NIR photothermal therapy against oral squamous cell carcinoma. ACS Omega 2021, 6, 11240–11247. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, H.; Wang, J. Topological insulators photodetectors: Preparation, advances and application challenges. Mater. Today Commun. 2022, 33, 104190. [Google Scholar] [CrossRef]
- Hong, G.; Wu, Q.; Wang, C.; Ren, J.; Xu, T.; Zhang, W.; Lee, S. Surface doping of nitrogen atoms on graphene via molecular precursor. Appl. Phys. Lett. 2013, 102, 051610. [Google Scholar] [CrossRef]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Dai, D.; Piels, M.; Bowers, J.E. Monolithic germanium/silicon photodetectors with decoupled structures: Resonant APDs and UTC photodiodes. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 43–56. [Google Scholar]
- Renker, D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl. Instrum. Methods Phys. Res. A 2006, 567, 48–56. [Google Scholar] [CrossRef]
- McKay, K.G. Avalanche breakdown in silicon. Phys. Rev. 1954, 94, 877–884. [Google Scholar] [CrossRef]
- Miller, S.L. Avalanche breakdown in germanium. Phys. Rev. 1955, 99, 1234–1241. [Google Scholar] [CrossRef]
- Miller, S.L. Ionization rates for holes and electrons in silicon. Phys. Rev. 1957, 105, 1246–1249. [Google Scholar] [CrossRef]
- Wolff, P.A. Theory of electron multiplication in silicon and germanium. Phys. Rev. 1954, 95, 1415–1420. [Google Scholar] [CrossRef]
- Sparks, M.; Mills, D.L.; Warren, R.; Holstein, T.; Maradudin, A.A.; Sham, L.J.; Loh, E., Jr.; King, D.F. Theory of electron-avalanche breakdown in solids. Phys. Rev. B 1981, 24, 3519–3536. [Google Scholar] [CrossRef]
- Werner, J.H.; Kolodinski, S.; Queisser, H.J. Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 1994, 72, 3851–3854. [Google Scholar] [CrossRef]
- Gao, A.; Lai, J.; Wang, Y.; Zhu, Z.; Zeng, J.; Yu, G.; Wang, N.; Chen, W.; Cao, T.; Hu, W.; et al. Observation of ballistic avalanche phenomena in nanoscalevertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Jansen-van Vuuren, R.D.; Armin, A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic Photodiode: The Future of full color detection and image sensing. Adv. Mater. 2016, 28, 4766–4802. [Google Scholar] [CrossRef]
- Yan, D.H.; Wang, H.B.; Du, B.X. Organic Introduction to Semiconductor Heterogeneous Structures; Science Press: Beijing, China, 2008. [Google Scholar]
- Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Wang, W.; An, Q.; Wang, J.; Sun, Q.; Zhang, M. Trap-assisted photomultiplication polymer photodetectors obtaining an external EQE of 37500%. ACS Appl. Mater. Interfaces 2015, 10, 5890–5897. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Xiao, Z.; Huang, J. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer. Adv. Opt. Mater. 2013, 4, 289–294. [Google Scholar] [CrossRef]
- Rauch, T.; Boberl, M.; Tedde, S.F.; Furst, J.; Kovalenko, M.V.; Hesser, G.N.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336. [Google Scholar] [CrossRef]
- Huang, J.S.; Yang, Y. Origin of photomultiplication in C60 based devices. Appl. Phys. Lett. 2007, 91, 203505. [Google Scholar] [CrossRef] [Green Version]
- Chynoweth, A.G. Ionization rates for electrons and holes in silicon. Phys. Rev. 1958, 109, 1537. [Google Scholar]
- Esopi, M.R.; Calcagno, M.; Yu, Q.M. Organic ultraviolet photodetector display photomultiplier, low dark current, high dark current stability study. Adv. Mater. Technol. 2017, 2, 1700025. [Google Scholar] [CrossRef]
- Caughey, D.M.; Thomas, R.E. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 1967, 55, 2192–2193. [Google Scholar] [CrossRef]
- Bykhovski, A.; Gelmont, B.; Shur, M. The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure. J. Appl. Phys. 1993, 74, 6734–6739. [Google Scholar] [CrossRef]
- Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, R10024. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef]
- Ni, X.J.; Wong, Z.J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Genov, D.A.; Zhang, S.; Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 2009, 5, 687–692. [Google Scholar] [CrossRef]
- Echtermeyer, T.J.; Milana, S.; Sassi, U.; Eiden, A.; Wu, M.; Lidorikis, E.; Ferrari, A.C. Surface plasmon polariton graphene photodetectors. Nano Lett. 2016, 16, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.H.; Reinhard, B.M. Enhanced optical chirality through locally excited surface plasmon polaritons. ACS Photonics 2015, 2, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Weiner, J. The physics of light transmission through subwavelength apertures and aperture arrays. Rep. Prog. Phys. 2009, 72, 064401. [Google Scholar] [CrossRef]
- Johns, P.; Yu, K.; Devadas, M.S.; Hartland, G.V. Role of resonances in the transmission of surface plasmon polaritons between nanostructures. ACS Nano 2016, 10, 3375–3381. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Stoicheff, B.P. Double-photon excitation of fluorescence in anthracene single crystals. J. Chem. Phys. 1963, 38, 2032–2033. [Google Scholar] [CrossRef]
- Zou, X.; Pahlke, K.; Mathis, W. Generation of arbitrary superpositions of the Dicke states of excitons in optically driven quantum dots. Phys. Rev. A 2003, 68, 034306. [Google Scholar] [CrossRef] [Green Version]
- Swenberg, C.E.; Stacy, W.T. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 1968, 2, 327–328. [Google Scholar] [CrossRef]
- Geacintov, N.; Pope, M.; Vogel, F. Effect of magnetic field on the fluorescence of tetracene crystals: Exciton fission. Phys. Rev. Lett. 1969, 22, 593. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, D.; McLaughlin, R.; Semenov, D.; McGill, S.; Yu, Z.; Ehrenfreund, E.; Vardeny, V.Z. Triplet exciton fine structure in Pt-rich polymers studied by circularly polarized emission under high magnetic field. Phys. Rev. B 2018, 98, 155205. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.; Swenberg, C.E.; Pope, M. Triplet exciton caging in two dimensions: Magnetic field effects. J. Chem. Phys. 1976, 64, 5115–5120. [Google Scholar] [CrossRef]
- Klein, G. Kinematics of triplet pairs in anthracene and tetracene crystals. Chem. Phys. Lett. 1978, 57, 202–206. [Google Scholar] [CrossRef]
- Arnold, S.; Whitten, W.B. Temperature dependence of the triplet exciton yield in fission and fusion in tetracene. J. Chem. Phys. 1981, 75, 1166–1169. [Google Scholar] [CrossRef]
- Müller, A.M.; Avlasevich, Y.S.; Müllen, K.; Bardeen, C.J. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett. 2006, 421, 518–522. [Google Scholar] [CrossRef]
- Müller, A.M.; Avlasevich, Y.S.; Schoeller, W.W.; Müllen, K.; Bardeen, C.J. Exciton fission and fusion in bis (tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 2007, 129, 14240–14250. [Google Scholar] [CrossRef]
- Rademaker, H.; Hoff, A.J.; Van Grondelle, R.; Duysens, L.N. Carotenoid triplet yields in normal and deuterated Rhodospirillum rubrum. Biochim. Biophys. Acta-Bioenerg. 1980, 592, 240–257. [Google Scholar] [CrossRef]
- Piland, G.B.; Burdett, J.J.; Kurunthu, D.; Bardeen, C.J. Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. J. Phys. Chem. C 2013, 117, 1224–1236. [Google Scholar] [CrossRef]
- Hanna, M.C.; Nozik, A.J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510. [Google Scholar] [CrossRef]
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [Google Scholar] [CrossRef] [PubMed]
- Varnava, M.; Browne, E.D.; Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 2008, 100, 060502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cova, S.; Ghioni, M.; Lotito, A.; Rech, I.; Zappa, F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 2004, 51, 1267–1288. [Google Scholar] [CrossRef]
- Akiba, M.; Tsujino, K.; Sasaki, M. Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode. Opt. Lett. 2010, 35, 2621–2623. [Google Scholar] [CrossRef]
- Yuan, Z.L.; Kardynal, B.E.; Sharpe, A.W.; Shields, A.J. High speed single photon detection in the near-infrared. Appl. Phys. Lett. 2007, 91, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Marsili, F.; Verma, V.B.; Stern, J.A.; Harrington, S.; Lita, A.E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M.D.; Mirin, R.P.; et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 2013, 7, 210–214. [Google Scholar] [CrossRef]
- Li, Q.; He, J.L.; Hu, W.D.; Chen, L.; Chen, X.S.; Lu, W. Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p-i-n electron-avalanche photodiodes. IEEE Trans. Electron Devices 2018, 65, 572–576. [Google Scholar] [CrossRef]
- Jiang, X.; Itzler, M.A.; Ben-Michael, R.; Slomkowski, K. InGaAsP-InP avalanche photodiodes for single photon detection. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 895–905. [Google Scholar] [CrossRef]
- Albota, M.A.; Wong, F.N. Efficient single-photon counting at 1.55 microm by means of frequency up conversion. Opt. Lett. 2004, 29, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Thew, R.T.; Tanzilli, S.; Krainer, L.; Zeller, S.C.; Rochas, A.; Rech, I.; Cova, S.; Zbinden, H.; Gisin, N. Low jitter up-conversion detectors for telecom wavelength GHz QKD. New J. Phys. 2006, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Diamanti, E.; Takesue, H.; Langrock, C.; Fejer, M.M.; Yamamoto, Y. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Opt. Express 2006, 14, 13073–13082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gol’tsman, G.N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 2001, 79, 705–707. [Google Scholar] [CrossRef]
- Ferrari, S.; Schuck, C.; Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 2018, 7, 1725–1758. [Google Scholar] [CrossRef]
- Lau, J.A.; Verma, V.B.; Schwarzer, D.; Wodtke, A.M. Superconducting single-photon detectors in the mid-infrared for physical chemistry and spectroscopy. Chem. Soc. Rev. 2023, 52, 921–941. [Google Scholar] [CrossRef]
- Yang, J.; Kerman, A.J.; Dauler, E.A.; Anant, V.; Rosfjord, K.M.; Berggren, K.K. Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors. IEEE Trans. Appl. Supercond. 2007, 17, 581–585. [Google Scholar] [CrossRef]
- Marsili, F.; Bitauld, D.; Gaggero, A.; Jahanmirinejad, S.; Leoni, R.; Mattioli, F.; Fiore, A. Physics and application of photon number resolving detectors based on superconducting parallel nanowires. New J. Phys. 2009, 11, 045022. [Google Scholar] [CrossRef]
- Radenbaugh, R. Refrigeration for superconductors. Proc. IEEE 2004, 92, 1719–1734. [Google Scholar] [CrossRef]
- Hadfield, R.H.; Stevens, M.J.; Gruber, S.S.; Gruber, S.S.; Miller, A.J.; Schwall, R.E.; Mirin, R.P.; Nam, S.W. Single photon source characterization with a superconducting single photon detector. Opt. Express 2005, 13, 10846–10853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosfjord, K.M.; Yang, J.K.; Dauler, E.A.; Miller, A.J.; Schwall, R.E.; Mirin, R.P.; Nam, S.W. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 2006, 14, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Takesue, H.; Nam, S.W.; Zhang, Q.; Hadfield, R.H.; Honjo, T.; Tamaki, K.; Yamamoto, Y. Quantum key distribution over a 40 dB channel loss using superconducting single photon detectors. Physics 2007, 1, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Li, W.; Chu, B.; Su, Z.; Zhang, F.; Lee, C.S. High performance small molecule photodetector with broad spectral response range from 200 to 900nm. Appl. Phys. Lett. 2011, 99, 023305. [Google Scholar] [CrossRef]
- Hiramoto, M.; Imahigashi, T.; Hengshan, M. Photocurrent multiplication in organic pigment films. Appl. Phys. Lett. 1994, 64, 187–189. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.A.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J.; Miyamoto, Y.; Geohegan, D.; et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2011, 6, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lin, C.; Yu, H.; Tang, Y.; Song, C.; Yuwen, L.; Li, H.; Xie, X.; Wang, L.; Huang, W. Templating C60 on MoS2 nanosheets for 2D hybrid van der Waals p-n nanoheterojunctions. Chem. Mater. 2016, 28, 4300–4306. [Google Scholar] [CrossRef]
- Dong, J.; Liu, F.; Wang, F.; Wang, J.; Li, M.; Wen, Y.; Wang, L.; Wang, G.; He, J.; Jiang, C. Configuration-dependent anti-ambipolar van der Waals p-n heterostructures based on pentacene single crystal and MoS2. Nanoscale 2017, 9, 7519–7525. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, K.; Kim, T.; Pak, J.; Jang, J.; Song, Y.; Kim, Y.; Choi, B.; Chung, S.; Hong, W.; et al. Trap-mediated electronic transport properties of gate-tunable pentacene/ MoS2 p-n heterojunction diodes. Sci. Rep. 2016, 6, 36775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Lee, D.; Qu, D.; Liu, X.; Ryu, J.; Seabaugh, A.; Yoo, W. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 6564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Chow, W.; He, X.; Hu, P.; Zheng, S.; Wang, X.; Zhou, J.; Fu, Q.; Fu, W.; Yu, P.; et al. Van der Waals p-n junction based on an organic-inorganic heterostructure. Adv. Funct. Mater. 2015, 25, 5865–5871. [Google Scholar] [CrossRef]
- Presolski, S.; Wang, L.; Loo, A.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O.; Ugolotti, J.; et al. Functional nanosheet synthons by covalent modification of transition-metal dichalcogenides. Chem. Mater. 2017, 29, 2066–2073. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, H.; Choi, H.; Jung, H. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014, 14, 5941–5947. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Zhao, Y.; He, L.; Ji, C.; Zhou, H.; Gou, J.; Li, W.; Wu, Z.; Wang, X. Polarimetric three-dimensional topological insulators/organics thin film heterojunction photodetectors. ACS Nano 2019, 13, 10810–10817. [Google Scholar] [CrossRef]
- Yang, M.; Han, Q.; Liu, X.; Han, J.; Zhao, Y.; He, L.; Gou, J.; Wu, Z.; Wang, X.; Wang, J. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 2022, 1909659. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Liu, Q.; Zhou, H.; Han, J.; Xie, X.; Xiu, F.; Gou, J.; Wu, Z.; Hu, Z.; et al. A 3D Topological Dirac Semimetal/MoO3 Thin Film Heterojunction Infrared Photodetector with Current Reversal Phenomenon. J. Mater. Chem. C 2020, 8, 16024–16031. [Google Scholar] [CrossRef]
- Yao, J.; Zheng, Z.; Yang, G. All-layered 2D optoelectronics: A high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823. [Google Scholar] [CrossRef]
- Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hoh, H.; et al. Broadband photodetector based on graphene -Bi2Te3 heterostructure. ACS Nano 2015, 9, 1866–1894. [Google Scholar] [CrossRef]
- Nakayama, K.I.; Hiramoto, M.; Yokoyama, M. Photocurrent multiplication at organic/metal interface and surface morphology of organic films. J. Appl. Phys. 2000, 87, 3365–3369. [Google Scholar] [CrossRef]
- Hiramoto, M.; Sato, I.; Nakayama, K.; Yokoyama, M. Photocurrent multiplication at organic/metal interface and morphology of metal films. Jpn. J. Appl. Phys. 1998, 37, L1184–L1186. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Li, L.; Gao, M.; Hu, B. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement. ACS Appl. Mater. Interface 2015, 7, 22660–22668. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, F.; Lin, Y.; Wang, W.; Gao, M.; Li, L.; Zhang, J.; Zhan, X. Highly sensitive organic photodetector with tunable spectral response under bi-directional bias. Adv. Opt. Mater. 2016, 11, 1711–1717. [Google Scholar] [CrossRef]
- Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802. [Google Scholar] [CrossRef]
- Nakayama, K.; Hiramoto, M.; Yokoyama, M. A high-speed photocurrent multiplication device based on an organic double-layered structure. Appl. Phys. Lett. 2000, 76, 1194–1196. [Google Scholar] [CrossRef]
- Hiramoto, M.; Miki, A.; Yoshida, M. Photocurrent multiplication in organic single crystals. Appl. Phys. Lett. 2002, 81, 1500–1502. [Google Scholar] [CrossRef]
- Matsunobu, G.; Oishi, Y.; Yokoyama, M.; Hiramoto, M. High–speed multiplication-type photodetecting device using organic codeposited films. Appl. Phys. Lett. 2002, 81, 1321–1322. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Y.; Yu, Y.; Xu, K.; Mao, J.; Xu, G.; Ma, Y.; Wu, D.; Jie, J. Ultrahigh speed and broadband few-layer MoTe2/Si 2D–3D heterojunction-based photodiodes fabricated by pulsed laser Deposition. Adv. Funct. Mater. 2020, 1907951. [Google Scholar] [CrossRef]
- Chen, F.; Chien, S.; Cious, G. Highly sensitive, low voltage, photomultiple photometric detector exhibiting broadband response. Appl. Phys. Lett. 2010, 97, 103301. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, S.; Qian, S.; Chen, F. Spectral response in an organic photomultiplier infrared photodetectors using near-infrared dopants. Appl. Phys. Lett. 2012, 100, 013309. [Google Scholar]
- Dong, R.; Bi, C.; Dong, Q.; Guo, F.; Yuan, Y.; Fang, Y.; Xiao, Z.; Huang, J. An ultraviolet-to-NIR broads pectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2014, 6, 549–554. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Y.; Bai, Y.; Zheng, X.; Wang, Q.; Huang, J. A filterless visible-blind, narrow band, and near-infrared photodetector with a gain. Nanoscale 2016, 8, 12990–12997. [Google Scholar] [CrossRef]
- Xu, T.; Wu, Y.; Luo, X.; Guo, L. Plasmonic nanoresonators for high-resolution colour filtering and Spectral imaging. Nat. Commun. 2010, 1, 59. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Dan, Y.; Seo, K. Filter-freless image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014, 14, 1804–1809. [Google Scholar] [CrossRef]
- Jansen-van Vuuren, R.; Pivrikas, A.; Pandey, A.; Burn, P. Color selective organic photodetectors using ketocyanine-cored dendrimers. J. Mater. Chem. C 2013, 1, 3532–3543. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Ma, J.; Shen, H.; Li, L.; Duan, X.; Li, D. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun. 2019, 10, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.B.; Du, M.; Zhang, M.; Miao, J.; Fang, Y.; Zhang, F. Organic photodetectors with gain and broadband/narrowband response under top/bottom illumination conditions. Adv. Opt. Mater. 2018, 6, 1800249. [Google Scholar] [CrossRef]
Materials | G | EQE | D* Jones | Ri (A/W) | Ref. |
---|---|---|---|---|---|
P3HT:PC71BM | / | 6380% | / | / | [148] |
MePTC/Au | >104 | / | / | / | [147] |
phET-PTC | >104 | / | / | / | [146] |
graphene/Bi2Te3 | 87 | / | / | 35 | [145] |
Bi2Te3/SnTe/Bi2Te3 | / | 1833% | 6 × 1010 | 5.5 | [144] |
(Cd1−xZnx)3As2/MoO3 | / | 855.8% | 6.4 × 1010 | 3.1 | [143] |
Bi2Se3/MoO3 | / | 4.9 × 104% | 5.79 × 1011 | 1.6 × 104 | [142] |
Bi2Te3/PbPc | / | 4534% | 1.85 × 1010 | 23.54 | [141] |
Bi2Te3/CuPc | / | 4503% | 0.97 × 1010 | 13.42 | [141] |
P3HT:PC61BM | / | 37,500% | / | / | [74] |
InSe/BP | ~3 × 104 | / | / | / | [70] |
Bi2Te3/Pentacene | / | 2840% | / | 14.89 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Chang, H.; Chen, J.; Zhu, X. Multiplier Effects of Photodetectors—Source of Gain. Coatings 2023, 13, 1088. https://doi.org/10.3390/coatings13061088
Yang M, Chang H, Chen J, Zhu X. Multiplier Effects of Photodetectors—Source of Gain. Coatings. 2023; 13(6):1088. https://doi.org/10.3390/coatings13061088
Chicago/Turabian StyleYang, Ming, Haoliang Chang, Jinhuan Chen, and Xinyu Zhu. 2023. "Multiplier Effects of Photodetectors—Source of Gain" Coatings 13, no. 6: 1088. https://doi.org/10.3390/coatings13061088
APA StyleYang, M., Chang, H., Chen, J., & Zhu, X. (2023). Multiplier Effects of Photodetectors—Source of Gain. Coatings, 13(6), 1088. https://doi.org/10.3390/coatings13061088