Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacDonald, B.E.; Fu, Z.; Zheng, B.; Chen, W.; Lin, Y.; Chen, F.; Zhang, L.; Ivanisenko, J.; Zhou, Y.; Hahn, H.; et al. Recent Progress in High Entropy Alloy Research. JOM 2017, 69, 2024–2031. [Google Scholar] [CrossRef]
- Gao, M.C. Progress in High Entropy Alloys. JOM 2015, 67, 2251–2253. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, M.C.; Lin, S.K. Progress in High-Entropy Alloys. JOM 2019, 71, 3417–3418. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and Technology in High-Entropy Alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Zhang, T.W.; Ma, S.G.; Zhao, D.; Wu, Y.C.; Zhang, Y.; Wang, Z.H.; Qiao, J.W. Simultaneous Enhancement of Strength and Ductility in a NiCoCrFe High-Entropy Alloy upon Dynamic Tension: Micromechanism and Constitutive Modeling. Int. J. Plast. 2020, 124, 226–246. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, L.; He, W.; Liaw, P. Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys. Entropy 2014, 16, 895–911. [Google Scholar] [CrossRef]
- Tsai, M.H.; Chang, K.C.; Li, J.H.; Tsai, R.C.; Cheng, A.H. A Second Criterion for Sigma Phase Formation in High-Entropy Alloys. Mater. Res. Lett. 2016, 4, 90–95. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J.; Mao, H.H.; Nieh, T.G.; Lu, Z.P. Precipitation Behavior and Its Effects on Tensile Properties of FeCoNiCr High-Entropy Alloys. Intermetallics 2016, 79, 41–52. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Pradeep, K.G.; Raabe, D. A TRIP-Assisted Dual-Phase High-Entropy Alloy: Grain Size and Phase Fraction Effects on Deformation Behavior. Acta Mater. 2017, 131, 323–335. [Google Scholar] [CrossRef]
- Anand Sekhar, R.; Samal, S.; Nayan, N.; Bakshi, S.R. Microstructure and Mechanical Properties of Ti-Al-Ni-Co-Fe Based High Entropy Alloys Prepared by Powder Metallurgy Route. J. Alloys Compd. 2019, 787, 123–132. [Google Scholar] [CrossRef]
- Kao, S.W.; Yeh, J.W.; Chin, T.S. Rapidly Solidified Structure of Alloys with up to Eight Equal-Molar Elements—A Simulation by Molecular Dynamics. J. Phys. Condens. Matter 2008, 20, 145214. [Google Scholar] [CrossRef]
- Tang, W.Y.; Yeh, J.W. Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys. Met. Mat Trans. A 2009, 40, 1479–1486. [Google Scholar] [CrossRef]
- Tsai, D.C.; Deng, M.J.; Chang, Z.C.; Kuo, B.H.; Chen, E.C.; Chang, S.Y.; Shieu, F.S. Oxidation Resistance and Characterization of (AlCrMoTaTi)-Six-N Coating Deposited via Magnetron Sputtering. J. Alloys Compd. 2015, 647, 179–188. [Google Scholar] [CrossRef]
- Xie, L.; Brault, P.; Thomann, A.L.; Bauchire, J.M. AlCoCrCuFeNi High Entropy Alloy Cluster Growth and Annealing on Silicon: A Classical Molecular Dynamics Simulation Study. Appl. Surf. Sci. 2013, 285, 810–816. [Google Scholar] [CrossRef]
- Yu, L.; Hao, L.; Wei, L. Hierarchical FeCoNiCr high entropy alloy thin films with combined high strength and excellent corrosion resistance. Mater. Des. 2023, 231, 112049. [Google Scholar]
- Zhang, C.; Zhu, J.K.; Zhang, G.Q. Laser powder bed fusion of nano-TiB2 reinforced FeCoNiCr high-entropy alloy with enhanced strength and firm corrosion resistance. J. Alloys Compd. 2022, 927, 167110. [Google Scholar] [CrossRef]
- Chai, W.K.; Lu, T.; Pan, Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics 2020, 116, 106654. [Google Scholar] [CrossRef]
- Qiu, Y.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion characteristics of high entropy alloys. Mater. Sci. Technol. 2015, 31, 1235–1243. [Google Scholar] [CrossRef]
- Guo, F.Y.; YU, J.K.; Xiao, J.J. Preparation of FeCoNiCr High Entropy Alloy Coatings and Optimization of Process Parameters. Rare Met. Mater. Eng. 2021, 50, 2337–2342. [Google Scholar]
- Muench, F. Electroless plating of metal nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Yazdani, S.; Mesbah, M.; Dupont, V. Microstructure, wear and crack propagation evolution of electrodeposited nickel-nano diamond composite coatings: Molecular dynamic modeling and experimental study. Surf. Coat. Technol. 2023, 462, 129500. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, W.; Li, B. Influences of Co and process parameters on structure and corrosion properties of nanocrystalline Ni-W-Co ternary alloy film fabricated by electrodeposition at low current density. Surf. Coat. Technol. 2022, 439, 128457. [Google Scholar] [CrossRef]
- Bian, H.; Wang, R.; Zhang, K. Facile electrodeposition synthesis and super performance of nano-porous Ni-Fe-Cu-Co-W high entropy alloy electrocatalyst. Surf. Coat. Technol. 2023, 459, 129407. [Google Scholar] [CrossRef]
- Simka, W.; Puszczyk, D.; Nawrat, G. Electrodeposition of Metals from Non-Aqueous Solutions. Electrochim. Acta 2009, 54, 5307–5319. [Google Scholar] [CrossRef]
- Li, R.; Dong, Q.; Xia, J.; Luo, C.; Sheng, L.; Cheng, F.; Liang, J. Electrodeposition of Composition Controllable Zn Ni Coating from Water Modified Deep Eutectic Solvent. Surf. Coat. Technol. 2019, 366, 138–145. [Google Scholar] [CrossRef]
- Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M. Electrochemical Deposition and Microstructural Characterization of AlCrFeMnNi and AlCrCuFeMnNi High Entropy Alloy Thin Films. Appl. Surf. Sci. 2015, 358, 533–539. [Google Scholar] [CrossRef]
- Yao, C.Z.; Zhang, P.; Liu, M.; Li, G.R.; Ye, J.Q.; Liu, P.; Tong, Y.X. Electrochemical Preparation and Magnetic Study of Bi–Fe–Co–Ni–Mn High Entropy Alloy. Electrochim. Acta 2008, 53, 8359–8365. [Google Scholar] [CrossRef]
- Li, H.; Sun, H.; Wang, C.; Wei, B.; Yao, C.; Tong, Y.; Ma, H. Controllable Electrochemical Synthesis and Magnetic Behaviors of Mg–Mn–Fe–Co–Ni–Gd Alloy Films. J. Alloys Compd. 2014, 598, 161–165. [Google Scholar] [CrossRef]
- Yao, C.; Wei, B.; Zhang, P.; Lu, X.; Liu, P.; Tong, Y. Facile Preparation and Magnetic Study of Amorphous Tm-Fe-Co-Ni-Mn Multicomponent Alloy Nanofilm. J. Rare Earths 2011, 29, 133–137. [Google Scholar] [CrossRef]
- Sergici, A.O.; Randall, N.X. Scratch Testing of Coatings. Adv. Mater. Process. 2006, 164, 41–44. [Google Scholar]
- Shang, C.Y. The Synthesis, Micro-Characterization and Properties of CoCrFeNi (Cu, W, W0.5Mo0.5, Mo, WC) High Entropy Alloy Coatings. Master’s Thesis, Jinan University, Guangzhou, China, 2017. [Google Scholar]
- Shi, Y.G.; Zhang, T.B.; Kou, H.C.; Li, J. Study on corrosion properties of AlCoCrFeNiCu high entropy alloy in different media. Hot Work. Technol. 2011, 18, 1–3. [Google Scholar]
- Niu, X.L.; Wang, L.J.; Sun, D.; Julius, J. Research on microstructure and electrochemical properties of AlxFeCoCrNiCu (x = 0.25, 0.5, 1.0) high-entropy alloys. J. Funct. Mater. 2013, 44, 532–535. [Google Scholar]
- Tang, Q.H.; Dai, P.Q.; Hua, N.B. Electrochemical properties of nanocrystalline Al0.3CoCrFeNi high-entropy alloy in alkaline solution. Mater. Mechan. Eng. 2015, 39, 1–4. [Google Scholar]
- Wang, C.; Zhang, Q.S.; Jiang, F.; Zhang, H.F.; Hu, Z.Q. Corrosion behavior of Zr55Al10Cu30Ni5 amorphous alloy in NaOH solution. Rare Metal Mater. Eng. 2003, 32, 814–817. [Google Scholar]
- Zhou, Q.Y.; Sheng, M.Q.; Zhong, Q.D.; Lin, H.; Niu, X.B.; Wang, Y. Electrochemical study for magnesium alloy passivating behavior in the NaOH solution with F−. Acta Chim. Sin. 2010, 68, 1487–1493. [Google Scholar]
- Hsu, Y.J.; Chiang, W.C.; Wu, J.K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 2005, 92, 112–117. [Google Scholar] [CrossRef]
- Cao, C.N. Principle of Corrosion Electrochemistry; Chemical Industry Press: Beijing, China, 2008. [Google Scholar]
- Zhang, S.H.; Lian, J.; Feng, L.; Guo, Y.L. Reseach Progress on electrochemical and photo-electrochemical properties of passive film metal surface. Corr. Prot. 2011, 32, 381–384. [Google Scholar]
- Ismail, K.M.; Fathi, A.M.; Badawy, W.A. Effect of Nickel Content on the Corrosion and Passivation of Copper-Nickel Alloys in Sodium Sulfate Solutions. Corrosion 2004, 60, 795–803. [Google Scholar] [CrossRef]
- Yu, F.Z. Corrosion Resistance of Metal Materials; Science Press: Beijing, China, 1982. [Google Scholar]
FeSO4 | CoSO4 | NiSO4 | Cr2(SO4)3 | H3BO3 | KCl | C6H8O7 | C6H5Na3O7 |
---|---|---|---|---|---|---|---|
2 | 4 | 20 | 200 | 25 | 75 | 92 | 48 |
Alloy | Fe | Co | Ni | Cr | ΔSm (J·K−1·mol−1) | Thickness (μm) |
---|---|---|---|---|---|---|
FeCoNiCr | 23.84 | 28.41 | 24.69 | 23.06 | 11.50 | 5.20 |
Alloy | DK (A·dm−2) | Thickness (μm) | FNC (N) |
---|---|---|---|
FeCoNiCr | 15 | 2.23 | 21 |
20 | 3.42 | 28 | |
25 | 5.20 | 35 | |
35 | 3.45 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Y.; Gao, X.; Peng, L.; Qiao, Q.; Xiao, J.; Guo, F.; Wang, R.; Yu, J. Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings. Coatings 2023, 13, 1167. https://doi.org/10.3390/coatings13071167
Xu Z, Wang Y, Gao X, Peng L, Qiao Q, Xiao J, Guo F, Wang R, Yu J. Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings. Coatings. 2023; 13(7):1167. https://doi.org/10.3390/coatings13071167
Chicago/Turabian StyleXu, Zhefeng, Yan Wang, Xiaomin Gao, Luya Peng, Qi Qiao, Jingjing Xiao, Fuyu Guo, Rongguang Wang, and Jinku Yu. 2023. "Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings" Coatings 13, no. 7: 1167. https://doi.org/10.3390/coatings13071167
APA StyleXu, Z., Wang, Y., Gao, X., Peng, L., Qiao, Q., Xiao, J., Guo, F., Wang, R., & Yu, J. (2023). Electrochemical Deposition and Corrosion Resistance Characterization of FeCoNiCr High-Entropy Alloy Coatings. Coatings, 13(7), 1167. https://doi.org/10.3390/coatings13071167