Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Casein Films
2.3. Artificial Aging of Films
2.4. Biocomposite Film Characterization
2.4.1. Structure and Morphology Analysis of Films
2.4.2. Determination of Moisture Content and Water Solubility
2.4.3. Thickness, Mechanical, and Thermal properties of Casein Films
2.4.4. Spectral Analysis of Films
2.4.5. Film Color Analysis
2.4.6. Antioxidant Potential of Films
2.4.7. Free Amino Acids, Sulfhydryl Groups (–SH) and Disulfide Bonds (–S–S–) Content in Films
2.4.8. Sodium Dodecyl Sulfate—Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.5. Statistical Analyses
3. Results
3.1. SEM Analysis
3.2. Hydrodynamic Properties (Moisture Content and Water Solubility)
3.3. The Thickness, Mechanical and Thermal Properties
3.4. UV Barrier Properties
3.5. FT-IR Analysis
3.6. Color
3.7. Antioxidant Activity
3.8. Free Amino Acids, Sulfhydryl Groups (–SH) and Disulfide Bonds (–S–S–) Content
3.9. SDS-PAGE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthews, C.; Moran, F.; Jaiswal, A.K. A Review on European Union’s Strategy for Plastics in a Circular Economy and Its Impact on Food Safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: A Review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Gross, R.A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizymis, A.P.; Tzia, C. Edible Films and Coatings: Properties for the Selection of the Components, Evolution through Composites and Nanomaterials, and Safety Issues. Crit. Rev. Food Sci. Nutr. 2021, 62, 8777–8792. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.W.; Rahman, S.; Wani, A.A. Bio-Based Packaging for Fresh Fruits and Vegetables. In Innovative Packaging of Fruits and Vegetables: Strategies for Safety and Quality Maintenance; Taylor Francis Group: Abingdon, UK, 2018; pp. 1–28. [Google Scholar]
- Kaewprachu, P.; Osako, K.; Benjakul, S.; Tongdeesoontorn, W.; Rawdkuen, S. Biodegradable Protein-Based Films and Their Properties: A Comparative Study. Packag. Technol. Sci. 2016, 29, 77–90. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef] [Green Version]
- Ranadheera, C.S.; Liyanaarachchi, W.S.; Chandrapala, J.; Dissanayake, M.; Vasiljevic, T. Utilizing Unique Properties of Caseins and the Casein Micelle for Delivery of Sensitive Food Ingredients and Bioactives. Trends Food Sci. Technol. 2016, 57, 178–187. [Google Scholar] [CrossRef]
- Wusigale; Liang, L.; Luo, Y. Casein and Pectin: Structures, Interactions, and Applications. Trends Food Sci. Technol. 2020, 97, 391–403. [Google Scholar] [CrossRef]
- Khan, M.R.; Volpe, S.; Valentino, M.; Miele, N.A.; Cavella, S.; Torrieri, E. Active Casein Coatings and Films for Perishable Foods: Structural Properties and Shelf-Life Extension. Coatings 2021, 11, 899. [Google Scholar] [CrossRef]
- Bonnaillie, L.M.; Zhang, H.; Akkurt, S.; Yam, K.L.; Tomasula, P.M. Casein Films: The Effects of Formulation, Environmental Conditions and the Addition of Citric Pectin on the Structure and Mechanical Properties. Polymers 2014, 6, 2018–2036. [Google Scholar] [CrossRef] [Green Version]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein Films Crosslinked by Tannic Acid for Food Packaging Applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Vasilyeva, N.Y.; Malyar, Y.N.; Kazachenko, A.S.; Slyusareva, E.A. Synthesis of Sulfated Starch-Casein Complex. IOP Conf. Ser. Mater. Sci. Eng. 2020, 862, 062013. [Google Scholar] [CrossRef]
- Moghadam, F.A.M.; Khoshkalampour, A.; PourvatanDoust, S.; Naeijian, F.; Ghorbani, M. Preparation and Physicochemical Evaluation of Casein/Basil Seed Gum Film Integrated with Guar Gum/Gelatin Based Nanogel Containing Lemon Peel Essential Oil for Active Food Packaging Application. Int. J. Biol. Macromol. 2023, 224, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, E.; Assezat, G.; Prochazka, F.; Oulahal, N. Development and Characterization of a Novel Edible Extruded Sheet Based on Different Casein Sources and Influence of the Glycerol Concentration. Food Hydrocoll. 2018, 75, 182–191. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Q.; Luo, Y.; Murad, M.S.; Zhu, L.; Mu, G. Improved Packing Performance and Structure-Stability of Casein Edible Films by Dielectric Barrier Discharges (DBD) Cold Plasma. Food Packag. Shelf. Life 2020, 24, 100471. [Google Scholar] [CrossRef]
- Kadam, S.U.; Pankaj, S.K.; Tiwari, B.K.; Cullen, P.J.; O’Donnell, C.P. Development of Biopolymer-Based Gelatin and Casein Films Incorporating Brown Seaweed Ascophyllum Nodosum Extract. Food Packag. Shelf. Life 2015, 6, 68–74. [Google Scholar] [CrossRef]
- Bonnaillie, L.M.; Tomasula, P.M. Application of Humidity-Controlled Dynamic Mechanical Analysis (DMA-RH) to Moisture-Sensitive Edible Casein Films for Use in Food Packaging. Polymers 2015, 7, 91–114. [Google Scholar] [CrossRef] [Green Version]
- Solano, F. Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New J. Sci. 2014, 2014, 498276. [Google Scholar] [CrossRef] [Green Version]
- Meredith, P.; Sarna, T. The Physical and Chemical Properties of Eumelanin. Pigment Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef]
- d’Ischia, M.; Wakamatsu, K.; Cicoira, F.; di Mauro, E.; Garcia-Borron, J.C.; Commo, S.; Galván, I.; Ghanem, G.; Kenzo, K.; Meredith, P.; et al. Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigment Cell Melanoma Res. 2015, 28, 520–544. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. Simultaneous Enhancements of UV-Shielding Properties and Photostability of Poly(Vinyl Alcohol) via Incorporation of Sepia Eumelanin. ACS Sustain. Chem. Eng. 2016, 4, 2252–2258. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Agar-Based Antioxidant Composite Films Incorporated with Melanin Nanoparticles. Food Hydrocoll. 2019, 94, 391–398. [Google Scholar] [CrossRef]
- Zhao, W.; Liang, X.; Wang, X.; Wang, S.; Wang, L.; Jiang, Y. Chitosan Based Film Reinforced with EGCG Loaded Melanin-like Nanocomposite (EGCG@MNPs) for Active Food Packaging. Carbohydr. Polym. 2022, 290, 119471. [Google Scholar] [CrossRef]
- Park, S.A.; Yang, Y.H.; Choi, K.Y. One-Pot Production of Thermostable PHB Biodegradable Polymer by Co-Producing Bio-Melanin Pigment in Engineered Escherichia coli. Biomass Convers. Biorefin. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Macieja, S.; Środa, B.; Zielińska, B.; Roy, S.; Bartkowiak, A.; Łopusiewicz, Ł. Bioactive Carboxymethyl Cellulose (CMC)-Based Films Modified with Melanin and Silver Nanoparticles (AgNPs)—The Effect of the Degree of CMC Substitution on the In Situ Synthesis of AgNPs and Films’ Functional Properties. Int. J. Mol. Sci. 2022, 23, 15560. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Kwiatkowski, P.; Drozłowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Polak-śliwińska, M.; Kowalczyk, E.; Sienkiewicz, M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymers 2021, 13, 499. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Macieja, S.; Śliwiński, M.; Bartkowiak, A.; Roy, S.; Sobolewski, P. Alginate Biofunctional Films Modified with Melanin from Watermelon Seeds and Zinc Oxide/Silver Nanoparticles. Materials 2022, 15, 2381. [Google Scholar] [CrossRef]
- Shankar, S.; Wang, L.F.; Rhim, J.W. Effect of Melanin Nanoparticles on the Mechanical, Water Vapor Barrier, and Antioxidant Properties of Gelatin-Based Films for Food Packaging Application. Food Packag. Shelf. Life 2019, 21, 100363. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozlowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Henriques, M.H.F.; Bartkowiak, A.; Sobolewski, P. Whey Protein Concentrate/Isolate Biofunctional Films Modified with Melanin from Watermelon (Citrullus lanatus) Seeds. Materials 2020, 13, 3876. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Preparation of Carrageenan-Based Functional Nanocomposite Films Incorporated with Melanin Nanoparticles. Colloids Surf B Biointerfaces 2019, 176, 317–324. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł. Antioxidant, Antibacterial Properties and the Light Barrier Assessment of Raw and Purified Melanins Isolated from Citrullus lanatus (Watermelon) Seeds. Herba Pol. 2018, 64, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Lepczyński, A.; Ożgo, M.; Michałek, K.; Dratwa-Chałupnik, A.; Grabowska, M.; Herosimczyk, A.; Liput, K.P.; Poławska, E.; Kram, A.; Pierzchała, M. Effects of Three-Month Feeding High Fat Diets with Different Fatty Acid Composition on Myocardial Proteome in Mice. Nutrients 2021, 13, 330. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; van Hai, L.; Kim, H.C.; Zhai, L.; Kim, J. Preparation and Characterization of Synthetic Melanin-like Nanoparticles Reinforced Chitosan Nanocomposite Films. Carbohydr. Polym. 2020, 231, 115729. [Google Scholar] [CrossRef]
- Yang, M.; Li, L.; Yu, S.; Liu, J.; Shi, J. High Performance of Alginate/Polyvinyl Alcohol Composite Film Based on Natural Original Melanin Nanoparticles Used as Food Thermal Insulating and UV–Vis Block. Carbohydr. Polym. 2020, 233, 115884. [Google Scholar] [CrossRef]
- Bang, Y.J.; Shankar, S.; Rhim, J.W. Preparation of Polypropylene/Poly (Butylene Adipate-Co-Terephthalate) Composite Films Incorporated with Melanin for Prevention of Greening of Potatoes. Packag. Technol. Sci. 2020, 33, 433–441. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Jedra, F.; Mizieińska, M. New Poly(Lactic Acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers 2018, 10, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Kim, H.C.; Kim, J.W.; Zhai, L.; Zhu, Q.Y.; Kim, J. Incorporation of Melanin Nanoparticles Improves UV-Shielding, Mechanical and Antioxidant Properties of Cellulose Nanofiber Based Nanocomposite Films. Mater. Today Commun. 2020, 24, 100984. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, X.; McCallum, N.C.; Hu, Z.; Ni, Q.Z.; Kapoor, U.; Heil, C.M.; Cay, K.S.; Zand, T.; Mantanona, A.J.; et al. Unraveling the Structure and Function of Melanin through Synthesis. J. Am. Chem. Soc. 2021, 143, 2622–2637. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J. New Insight into Melanin for Food Packaging and Biotechnology Applications New Insight into Melanin for Food Packaging and Biotechnology Applications. Crit. Rev. Food Sci. Nutr. 2021, 62, 4629–4655. [Google Scholar] [CrossRef]
- Klempová, S.; Oravec, M.; Vizárová, K. Analysis of Thermally and UV–Vis Aged Plasticized PVC Using UV–Vis, ATR-FTIR and Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 294, 122541. [Google Scholar] [CrossRef]
- Pinto, J.; Dias, M.; Amaral, J.; Ivanov, M.; Paixão, J.A.; Coimbra, M.A.; Ferreira, P.; Pereira, E.; Gonçalves, I. Influence of UV Degradation of Bioplastics on the Amplification of Mercury Bioavailability in Aquatic Environments. Mar. Pollut. Bull. 2022, 180, 113806. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.Q.; Yan, Y.F.; Liu, B.R.; Zu, C.L. Effect of Increased UV-B Radiation on Carotenoid Accumulation and Total Antioxidant Capacity in Tobacco (Nicotiana Tabacum L.) Leaves. Genet. Mol. Res. 2017, 16, gmr16018438. [Google Scholar] [CrossRef]
- Smith, D.F.Q.; Casadevall, A. The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr. Top Microbiol. Immunol. 2019, 422, 1–30. [Google Scholar] [CrossRef]
- Binsi, P.K.; Muhamed Ashraf, P.; Parvathy, U.; Zynudheen, A.A. Photo-Protective Effect of Cuttlefish Ink Melanin on Human Hair. J. Appl. Polym. Sci. 2022, 139, 51631. [Google Scholar] [CrossRef]
- Raak, N.; Abbate, R.A.; Lederer, A.; Rohm, H.; Jaros, D. Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. Separations 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, L.; Pranata, J.; Barbano, D.M. Measurement of Casein in Milk by Kjeldahl and Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis. J. Dairy Sci. 2021, 104, 7448–7456. [Google Scholar] [CrossRef] [PubMed]
- Eigel, W.N.; Hofmann, C.J.; Chibber, B.A.K.; Tomich, J.M.; Keenan, T.W.; Mertz, E.T. Plasmin-Mediated Proteolysis of Casein in Bovine Milk. Proc. Natl. Acad. Sci. USA 1979, 76, 2244. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A. Silk Hydrogels Incorporated with Melanin. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2021. [Google Scholar]
- Rossi, C.; Fuentes-Lemus, E.; Davies, M.J. Reaction of Cysteine Residues with Oxidized Tyrosine Residues Mediates Cross-Linking of Photo-Oxidized Casein Proteins. Food Chem. 2022, 385, 132667. [Google Scholar] [CrossRef] [PubMed]
Sample | MC (%) | WS (%) |
---|---|---|
A | 10.66 ± 0.92 a | 100.00 ± 0.00 a |
B | 12.12 ± 0.83 a,b | 100.00 ± 0.00 a |
C | 11.82 ± 0.79 a,b | 100.00 ± 0.00 a |
D | 13.30 ± 0.73 b | 100.00 ± 0.00 a |
Sample | Thickness (mm) Unaged | TS (MPa) Unaged | EB (%) Unaged | Tm (°C) Unaged | ∆Hm (J/g) Unaged |
---|---|---|---|---|---|
A | 0.020 ± 0.008 a | 14.70 ± 2.33 a,b | 38.75 ± 9.40 b | 117.74 | 88.69 |
B | 0.019 ± 0.013 a | 15.78 ± 1.92 b | 56.17 ± 13.45 a,b | 111.06 | 65.33 |
C | 0.022 ± 0.016 a | 13.50 ± 1.23 a | 61.28 ± 8.05 a | 107.19 | 52.54 |
D | 0.024 ± 0.014 a | 14.64 ± 1.71 a | 71.03 ± 11.07 a | 93.75 | 45.60 |
A’ | 0.022 ± 0.011 a | 14.18 ± 1.37 a | 60.10 ± 10.94 a | 111.23 | 91.61 |
B’ | 0.023 ± 0.009 a | 13.22 ± 1.93 a | 66.55 ± 11.79 a | 107.40 | 42.20 |
C’ | 0.025 ± 0.014 a | 13.05 ± 1.33 a | 66.25 ± 6.43 a | 107.91 | 42.01 |
D’ | 0.024 ± 0.013 a | 12.90 ± 2.08 a | 81.93 ± 13.31 b | 91.74 | 28.59 |
Sample | L* | a* | b* | ∆E | YI | T280 (%) | T660 (%) |
---|---|---|---|---|---|---|---|
A | 47.48 ± 2.17 a | −0.19 ± 0.15 a | 19.62 ± 0.98 b | standard | 59.08 ± 2.94 a,b | 57.05 ± 0.45 d | 86.11 ± 0.83 d,e |
B | 46.63 ± 7.99 a | 1.23 ± 0.55 a,b,c | 23.77 ± 3.92 a,b | 8.19 ± 5.18 a | 72.94 ± 2.58 b,c | 40.20 ± 0.31 b | 81.93 ± 0.63 a,c |
C | 35.37 ± 4.32 a | 2.90 ± 0.59 c,d,e | 24.75 ± 2.26 a,b | 14.00 ± 4.28 a | 100.54 ± 8.12 d | 36.33 ± 0.92 a | 81.22 ± 0.77 a,b |
D | 39.63 ± 4.27 a | 3.76 ± 0.78 d,e | 28.14 ± 2.48 a | 13.40 ± 2.24 a | 102.12 ± 7.25 d | 36.45 ± 0.73 a | 80.69 ± 0.68 a,b |
A’ | 75.48 ± 2.94 b | 0.73 ± 0.16 a,b | 29.40 ± 0.43 a,c | Standard | 55.73 ± 2.24 a | 64.76 ± 0.73 e | 87.04 ± 0.82 e |
B’ | 70.50 ± 1.46 b | 2.27 ± 0.35 b,c,d | 35.71 ± 1.40 c,d | 7.09 ± 1.78 a | 63.48 ± 3.97 a,b,c | 40.11 ± 0.36 b | 84.16 ± 1.05 c,d |
C’ | 69.99 ± 2.27 b | 4.00 ± 0.54 e | 38.31 ± 1.49 d,e | 11.05 ± 1.70 a | 78.48 ± 2.76 c,e | 37.15 ± 0.85 a | 82.15 ± 0.69 a,c |
D’ | 68.62 ± 1.78 b | 6.50 ± 0.68 f | 44.76 ± 1.69 e | 17.86 ± 1.74 a | 93.22 ± 3.74 d,e | 29.65 ± 0.37 c | 78.90 ± 0.57 b |
Sample | DPPH (%) after 30 min | DPPH (%) after 24 h |
---|---|---|
A | 1.50 ± 1.76 a | 10.05 ± 1.27 a |
B | 2.76 ± 2.50 a | 15.44 ± 3.38 a,b |
C | 3.45 ± 0.64 a | 15.90 ± 2.47 a,b |
D | 3.09 ± 2.01 a | 18.89 ± 3.41 a,b,c |
A’ | 3.81 ± 3.39 a | 30.73 ± 5.18 c,d |
B’ | 3.21 ± 2.25 a | 32.72 ± 4.06 d |
C’ | 6.38 ± 1.78 a,b | 27.95 ± 5.74 c,d |
D’ | 12.37 ± 3.74 b | 29.28 ± 4.27 d,e |
Sample | Free Amino Acids (mg/g) | –SH (µmol/g) | –S–S– (µmol/g) |
---|---|---|---|
A | 11.47 ± 1.03 d | 35.44 ± 8.23 b,c | 182.14 ± 12.81 a |
B | 13.83 ± 1.43 c,d | 26.86 ± 5.92 a,b | 228.76 ± 16.25 b,e |
C | 15.64 ± 0.75 a,b,c | 19.10 ± 2.23 a,b | 270.38 ± 12.58 b,c,d |
D | 16.81 ± 0.53 a,b | 9.09 ± 1.88 a | 307.91 ± 15.63 d |
A’ | 14.41 ± 0.37 a,c | 120.30 ± 13.39 d | 174.12 ± 11.73 a |
B’ | 16.21 ± 0.51 a,b,c | 56.17 ± 4.93 c | 196.39 ± 14.30 a,e |
C’ | 16.78 ± 0.75 a,b | 29.11 ± 4.18 a,b | 258.78 ± 13.72 b,c |
D’ | 17.89 ± 0.84 b | 12.77 ± 2.74 a | 274.12 ± 10.88 c,d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macieja, S.; Lepczyński, A.; Bernaciak, M.; Śliwiński, M.; Bartkowiak, A.; Łopusiewicz, Ł. Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging. Coatings 2023, 13, 1262. https://doi.org/10.3390/coatings13071262
Macieja S, Lepczyński A, Bernaciak M, Śliwiński M, Bartkowiak A, Łopusiewicz Ł. Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging. Coatings. 2023; 13(7):1262. https://doi.org/10.3390/coatings13071262
Chicago/Turabian StyleMacieja, Szymon, Adam Lepczyński, Mateusz Bernaciak, Mariusz Śliwiński, Artur Bartkowiak, and Łukasz Łopusiewicz. 2023. "Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging" Coatings 13, no. 7: 1262. https://doi.org/10.3390/coatings13071262
APA StyleMacieja, S., Lepczyński, A., Bernaciak, M., Śliwiński, M., Bartkowiak, A., & Łopusiewicz, Ł. (2023). Effect of Melanin on the Stability of Casein Films Exposed to Artificially Accelerated UV Aging. Coatings, 13(7), 1262. https://doi.org/10.3390/coatings13071262