High-Temperature Corrosion Characteristics of Ni-20Cr-xSi Alloy Laser Cladding Layer in NaCl-KCl-Na2SO4-K2SO4 Mixed Salt Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser-Cladding-Layer Preparation
2.2. High-Temperature Corrosion Test
2.3. Representation
3. Results
3.1. Microstructure of Cladding Layer
3.2. Corrosion Weight Loss per Unit Area
3.3. Analysis about Corrosion Products
3.4. Surface-Morphology Analysis of Corrosion Products
3.5. Analysis of Cross-Section Morphology of Corrosion Products
4. Discussion
5. Conclusions
- (1)
- The addition of Si can effectively improve the high-temperature corrosion resistance of the Ni-20Cr-alloy-cladding layer in a mixed salt. At 600 °C, the corrosion resistance of the four types of cladding layers is sequentially Ni-20Cr-1Si > Ni-20Cr-3Si > Ni-20Cr-5Si > Ni-20Cr-0Si.
- (2)
- The mixed molten salt through the broken corrosion-product layer reacts with the cladding layer to accelerate corrosion, leading to an increase in corrosion weight loss of the cladding layer. The sulphate is more likely to promote the dissolution and loosening of protective metal oxides. The chloride not only damages the protective metal oxides, but also reacts to generate Cl2, leading to an “active oxidation” mechanism.
- (3)
- The four cladding layers mainly rely on the formation of a dense oxide layer rich in chromium (Cr2O3) on the surface to hinder the continuous corrosion occurring. The addition of Si is helpful to improve the stability of Cr2O3 in mixed salt. Moreover, Si enriched in the corrosion layer can effectively hinder the penetration of corrosion media and reduce the depth of the Cr-deficient zone. But when the Si content ≥3 wt.%, the corrosion product layer is prone to peeling off.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Samadder, S.R. A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Skrifvars, B.-J.; Backman, R.; Hupa, M.; Salmenoja, K.; Vakkilainen, E. Corrosion of Superheater Steel Materials under Alkali Salt Deposits Part 1: The Effect of Salt Deposit Composition and Temperature. Corros. Sci. 2008, 50, 1274–1282. [Google Scholar] [CrossRef]
- Skrifvars, B.-J.; Westén-Karlsson, M.; Hupa, M.; Salmenoja, K. Corrosion of Super-Heater Steel Materials under Alkali Salt Deposits. Part 2: SEM Analyses of Different Steel Materials. Corros. Sci. 2010, 52, 1011–1019. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Cheng, K.; Kong, Y. Chlorine-Induced High-Temperature Corrosion Characteristics of Ni-Cr Alloy Cladding Layer and Ni-Cr-Mo Alloy Cladding Layer. Corros. Sci. 2023, 216, 111102. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Z.; Liu, Q.; Li, Y.; Liu, C. Comparative Investigation on Corrosion Behavior of Laser Cladding C22 Coating, Hastelloy C22 Alloy and Ti–6Al–4V Alloy in Simulated Desulfurized Flue Gas Condensates. J. Mater. Res. Technol. 2022, 18, 2194–2207. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Cheng, K.; Shen, Y.; Li, J. Corrosion Characteristics of Inconel 625 Cladding Layer and NiCrMoAl Cladding Layer in Molten NaCl-KCl and NaCl-KCl-Na2SO4. Corros. Sci. 2023, 221, 111308. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Gao, Y.; Wang, X.; Zheng, C. Effect of Cr Content on Corrosion Resistance of Ni–XCr–Mo Laser-Cladding Coatings under H2S-Induced High-Temperature Corrosion Atmosphere. Materials 2022, 15, 1885. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Z.; Liu, Q.; Kong, Y.; Liu, C. Effect of Cr on Corrosion Behavior of Laser Cladding Ni-Cr-Mo Alloy Coatings in Sulfuric Acid Dew Point Corrosion Environment. Coatings 2022, 12, 421. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Wang, Y.; Tang, J. A Comparative Study on the High Temperature Corrosion of TP347H Stainless Steel, C22 Alloy and Laser-Cladding C22 Coating in Molten Chloride Salts. Corros. Sci. 2014, 83, 396–408. [Google Scholar] [CrossRef]
- Morks, M.F.; Berndt, C.C. Corrosion and Oxidation Properties of NiCr Coatings Sprayed in Presence of Gas Shroud System. Appl. Surf. Sci. 2010, 256, 4322–4327. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Chen, T.; Zhang, X.; Li, H.; Yu, Y.; Yao, H. Comparative Investigation on Thermal Corrosion of Alloy Coatings in Simulated Waste Incinerator Environment. Corros. Sci. 2021, 189, 109592. [Google Scholar] [CrossRef]
- Hamdani, F.; Abe, H.; Ter-Ovanessian, B.; Normand, B.; Watanabe, Y. Effect of Chromium Content on the Oxidation Behavior of Ni-Cr Model Alloys in Superheated Steam. Met. Mater. Trans. A 2015, 46, 2285–2293. [Google Scholar] [CrossRef]
- Liu, H.; Huang, F.; Yuan, W.; Hu, Q.; Liu, J.; Cheng, Y.F. Essential Role of Element Si in Corrosion Resistance of a Bridge Steel in Chloride Atmosphere. Corros. Sci. 2020, 173, 108758. [Google Scholar] [CrossRef]
- Geng, S.; Zhu, J.; Brady, M.P.; Anderson, H.U.; Zhou, X.-D.; Yang, Z. A Low-Cr Metallic Interconnect for Intermediate-Temperature Solid Oxide Fuel Cells. J. Power Sources 2007, 172, 775–781. [Google Scholar] [CrossRef]
- Truman, J.E.; Pirt, K.R. The Influence of the Content of Certain Incidental Elements on the Cyclic Oxidation Resistance of 12–13% Chromium Steels. Corros. Sci. 1976, 16, 103–108. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Ni, C.S.; Niu, Y. The Effect of Si Additions on the High Temperature Oxidation of a Ternary Ni–10Cr–4Al Alloy in 1 atm O2 at 1100 °C. Corros. Sci. 2009, 51, 511–517. [Google Scholar] [CrossRef]
- Dong, Z.; Li, M.; Behnamian, Y.; Luo, J.-L.; Chen, W.; Amirkhiz, B.S.; Liu, P.; Pang, X.; Li, J.; Zheng, W.; et al. Effects of Si, Mn on the Corrosion Behavior of Ferritic–Martensitic Steels in Supercritical Water (SCW) Environments. Corros. Sci. 2020, 166, 108432. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, D.G.; Shao, T.M. Electrochemical Study on the Hot Corrosion Behavior of Ni16Cr13Co4Mo Alloy in Molten NaCl-KCl and NaCl-KCl-Na2SO4. Corros. Sci. 2022, 200, 110247. [Google Scholar] [CrossRef]
- Abu Kassim, S.; Thor, J.A.; Abu Seman, A.; Abdullah, T.K. High Temperature Corrosion of Hastelloy C22 in Molten Alkali Salts: The Effect of Pre-Oxidation Treatment. Corros. Sci. 2020, 173, 108761. [Google Scholar] [CrossRef]
- Esleben, K.; Gorr, B.; Christ, H.-J.; Mukherji, D.; Rösler, J. The Effect of Ni and Si Additions on the Oxidation Behaviour of Co-17Re-18Cr Alloys. Corros. Sci. 2019, 159, 108135. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Jia, H.; Gao, R.; Ran, M.; Zheng, W.; Zhang, M.; Li, H.; Zhang, J.; Zeng, X.; et al. Understanding the Excellent Corrosion Resistance of Fe-12Cr ODS Alloys with and without Si in Supercritical CO2 through Advanced Characterization. Corros. Sci. 2023, 210, 110827. [Google Scholar] [CrossRef]
- Jian, Z.; Zongde, L.; Herong, M.; Yue, L.; Jiaxuan, L. Effect of Si on High Temperature Oxidation Characteristics of Laser Cladding 625 Alloy. Rare Met. Mater. Eng. 2022, 51, 3602–3610. [Google Scholar]
Samples | Element Content (wt.%) | ||
---|---|---|---|
Ni | Cr | Si | |
S0 | Bal | 20 | 0 |
S1 | Bal | 20 | 1 |
S3 | Bal | 20 | 3 |
S5 | Bal | 20 | 5 |
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Si | - | - | 0.8 | 3.9 | 7.5 | 7.2 | 7.5 | 11.7 |
Cr | 22.5 | 24.4 | 23.9 | 22.4 | 20.6 | 29 | 23.5 | 19.9 |
Ni | 77.5 | 75.6 | 75.4 | 73.7 | 71.9 | 63.8 | 69 | 68.4 |
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
O | 50.7 | 8.2 | 34.6 | 0.9 | 40.8 | 26.8 | 1.8 | 32.4 |
Na | 4.0 | 1.9 | 2.7 | 1.3 | 6.7 | 7.8 | 1.1 | 20.2 |
Si | - | - | - | 2.4 | 0.9 | 3.6 | 0.5 | 2.7 |
S | 0.7 | 1.2 | 0.8 | 1.1 | 1.9 | 2.7 | 15.9 | 3.9 |
Cl | 1.2 | 0.6 | 0.8 | 0.4 | 2.3 | 2.4 | 0.4 | 4.1 |
K | 1.3 | 0.6 | 1.0 | 0.8 | 1.8 | 3.2 | 0.8 | 6.4 |
Cr | 40.4 | 15.4 | 52.8 | 10.0 | 39.7 | 41.9 | 2.2 | 24.7 |
Ni | 1.7 | 72.1 | 7.4 | 83.1 | 6.0 | 11.6 | 77.3 | 5.6 |
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | 7.4 | 39.2 | 1.8 | 26.9 | 35 | 3.9 | 33.8 | 6.2 | 13.5 | 3.4 | 38.4 | 9.3 | 4.3 |
Na | 1.7 | 1.7 | 0.5 | 14.8 | 2.6 | 0.9 | 13.3 | 0.8 | 3.4 | 0.3 | 7.5 | 1.7 | 1.0 |
Si | - | - | - | 2.3 | 3.0 | 1.0 | 4.7 | 1.7 | 2.3 | 1.9 | 4.9 | 2.4 | 2.8 |
S | 1.8 | 2.0 | 11.8 | 2.6 | 2.2 | 16 | 2.3 | 2.0 | 15.6 | 19.4 | 3.7 | 8.6 | 11.3 |
Cl | 0.4 | 0.4 | 0.3 | 1.0 | 0.8 | 0.2 | 1.9 | 0.6 | 1.5 | 0.3 | 1.5 | 0.3 | 0.3 |
K | 0.4 | 0.5 | 0.4 | 0.8 | 0.9 | 0.5 | 1.7 | 0.8 | 1.1 | 0.4 | 2.4 | 1.2 | 0.5 |
Cr | 21.7 | 50.2 | 24.4 | 46.5 | 38.9 | 26.2 | 35.4 | 4.4 | 16.1 | 22.2 | 37.4 | 5.0 | 15.8 |
Ni | 66.6 | 6.0 | 60.9 | 5.1 | 16.7 | 51.2 | 6.9 | 83.6 | 46.5 | 52.0 | 4.2 | 71.4 | 64.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liu, Z.; Liu, F. High-Temperature Corrosion Characteristics of Ni-20Cr-xSi Alloy Laser Cladding Layer in NaCl-KCl-Na2SO4-K2SO4 Mixed Salt Environment. Coatings 2023, 13, 1320. https://doi.org/10.3390/coatings13081320
Chen S, Liu Z, Liu F. High-Temperature Corrosion Characteristics of Ni-20Cr-xSi Alloy Laser Cladding Layer in NaCl-KCl-Na2SO4-K2SO4 Mixed Salt Environment. Coatings. 2023; 13(8):1320. https://doi.org/10.3390/coatings13081320
Chicago/Turabian StyleChen, Shanshan, Zongde Liu, and Fulai Liu. 2023. "High-Temperature Corrosion Characteristics of Ni-20Cr-xSi Alloy Laser Cladding Layer in NaCl-KCl-Na2SO4-K2SO4 Mixed Salt Environment" Coatings 13, no. 8: 1320. https://doi.org/10.3390/coatings13081320
APA StyleChen, S., Liu, Z., & Liu, F. (2023). High-Temperature Corrosion Characteristics of Ni-20Cr-xSi Alloy Laser Cladding Layer in NaCl-KCl-Na2SO4-K2SO4 Mixed Salt Environment. Coatings, 13(8), 1320. https://doi.org/10.3390/coatings13081320