Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products
Abstract
:1. Introduction
2. Techniques of Making Edible Coatings
2.1. Casting and Extrusion
2.2. Dipping (Immersion)
2.3. Electrospinning
2.4. Spraying
3. Edible Films and Coating Materials
Polysaccharides | Provenance | Applications | Type of Grape | Shelf-Life after Protection | Ref. |
---|---|---|---|---|---|
Chitosan | Deacetylating chitin that is found in animal shells, such as crustaceans, insect cuticles, and yeast | Food packaging, nutraceuticals, biotechnology, medicine, pharmaceuticals, textiles, agriculture, cosmetics, and environmental chemistry | Table grapes (Vitis labrusca L.) | 12 days at room temperature (25 °C) and 24 days under refrigeration (12 °C) | [64,65,66,67] |
Cellulose | Produced by plants, animals, or bacteria | Food packaging | - | - | [2,68] |
Methylcellulose | Easily prepared cellulose derivate | Food packaging | - | - | [69] |
Pectin | Can be found in many fruits and vegetables, such as banana peels, red pomelo, watermelon rinds, sugar beet pulp, sunflower heads, tomato pomace, and carrot pomace, but most commercial pectin is obtained from citrus or apple pomace wastes | The food industry as a preservative in jams, jellies, cakes, and food packaging | Table grape (Red Globe) | 35 days of storage at 4 °C | [2,70,71,72,73] |
Carrageenan | Extracted from red seaweed, such as Eucheuma cottonii, Mastocarpus stellatus, and Hypnea musciformis | The food industry, cosmetic, environmental sectors, and health sectors | - | - | [60,74] |
Alginate | Exists in the cell walls of brown algae | Food, cosmetic, and pharmaceutical industries as emulsifying, gelling agents, stabilizers, thickeners, and additives | Table Grape (Vitis vinifera cv. ‘Italia’) | 9 days of storage at 25 °C | [75,76] |
Arabic Gum | Produced from the Acacia Senegal tree | Industries such as food, pharmaceuticals, cosmetics, textiles, paper, ink, and printing inks | - | - | [77] |
Xanthan Gum | Exists in nature and is produced by Xanthomonas campestris | Tissue engineering, the pharmaceutical industry, and the food industry an additive given its thickener, stabilizer, and emulsifier properties. | Grape (Vitis vinifera cv. Pinot Noir) | 21 days under cold storage | [78,79] |
Tragacanth Gum | Obtained from the dry sap of the species Astragalus | Food industry and medicine | - | - | [80,81] |
Guar Gum | Obtained from the seed endosperm of Cyamopsis tetragonolobus | Food packaging, pharmacological, and biomedical | - | - | [82,83,84] |
Locust Bean Gum | Obtained by crushing the endosperm seeds from the carob fruit pod | Industries of paper, textile, pharmaceutic, cosmetics, and food products, specifically dairy products such as ice cream, yogurt, and cheese as a thickening agent | - | - | [85] |
Tara Gum | Obtained from the seed endosperm of the Tara tree | In the pharmaceutical industry as an excipient, the food industry as a thickener and stabilizer, and the biomedical field | - | - | [86,87] |
Fenugreek Seed Gum | Extracted from seeds of the fenugreek plant | Medicinal, pharmaceutical, and nutraceutical fields | - | - | [88] |
Basil Gum | Obtained from basil seeds | Food industry | - | - | [89] |
Shellac Gum | Refined from lac resin that is excreted from insects | Green electronics, 3D printing, stealth technology, intelligent sensors, pharmaceutical and food industries | Grape | 7 days at refrigerated (4 °C) and 7 days at temperature ambient (30 °C) | [23,90,91] |
Gum Ghatti | An exudate gum from the tree Anogeissus Indifolia | Paper-making industry, wax industry, pharmaceutical industry, and food industry as a thickening agent stabilizer and emulsifier | Table grape (Vitis vinifera L. Rishbaba) | 60 days of storage at 0 ± 1 °C and 85% relative humidity | [92,93] |
Persian Gum | Obtained from the bark of wild almond trees | Food applications as a gelling agent, fat replacer, and film-forming agent | - | - | [94,95] |
Starch | Is composed of amylose (Water-soluble) and amylopectin (water-insoluble) molecules and is found in several foods, such as cassava, corn, millet, wheat, rice, quinoa, sweet potatoes, peas, and tef | The packaging industry and food industry | Red Crimson Grape | 21 days of storage at 7 °C ± 0.2 °C | [2,96,97] |
Agar | Extracted from certain red seaweed | Biomedical, pharmaceutical fields and food industry as a solidifying agent in various food preparation | White grape | 14 to 21 days of storage at 37 °C | [98,99,100] |
Pullulan | Is developed by microbial fermentation | Food packaging, adhesive binders, food coatings, encapsulating agents, fat replaces, thickeners | Table grape (Vitis vinifera L.) | 13 days of storage at 25 °C | [90,99,101] |
Inulin | Is found in several plant species, like Liliaceae, Amaryllidaceae, Gramineae, and Compositae | The food industry, pharmaceutical, and biomedical fields | - | - | [98] |
Konjac Glucomannan | Extracted from the tuber of Amorphophallus konjac | The food industry as an additive and thickener | - | - | [102,103] |
3.1. Polysaccharides
3.2. Proteins
Proteins | Provenance | Applications | Type of Grape | Shelf-Life after Protection | Ref. |
---|---|---|---|---|---|
Gelatin | Animal sub-products, such as pig skin, beef skin, and pork and cattle bones | Confectionery, pharmaceuticals, meat, cosmetics and health products, desserts, and dairy products | Fresh grapes | 14 days at the storage | [66,99,158] |
Zein | Extracted from corn that is mostly present in corn residues | Food packaging, tissue engineering, food preservation, and cementing the walls of medicines sensitive to microorganisms | - | - | [159,160,161] |
Whey Protein | A by-product of cheese manufacturing | Food packaging | Thompson grape | 14 days at 25 °C | [162] |
3.3. Lipids
Lipids | Provenance | Applications | Ref. |
---|---|---|---|
Beeswax | Produced naturally by honeybees in the bees’ hive | Production of candles, metal casting, cosmetic products, textiles, polishes, and food processing | [177] |
Candelilla wax | Obtained from leaves of E. antisyphilitica Zuccarini | Food packaging | [178] |
Carnauba wax | Extracted from the leaves of the carnauba trees | Food packaging, polishing wax, cosmetics, and dentistry | [31,179] |
4. Using Essential Oils, Plasticizers, Extracts, and Crosslinker Agents in the Edible Film with Biopolymers
5. Application of Edible Coatings for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Available online: https://www.un.org/en/global-issues/population (accessed on 27 June 2023).
- Khalid, M.; Niaz, B.; Saeed, F.; Afzaal, M.; Islam, F.; Hussain, M.; Mahwish; Khalid, H.; Siddeeg, A. Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. Int. J. Food Prop. 2022, 25, 1817–1847. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.; Lopez-de-Armentia, I.; Ramón, D.; Murillo, R.; Alonso, R. Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity. Resources 2022, 11, 33. [Google Scholar] [CrossRef]
- Olt, V.; Báez, J.; Curbelo, R.; Boido, E.; Dellacassa, E.; Fernández-Fernández, A.; Medrano, A. Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener. Biol. Life Sci. Forum 2022, 18, 50. [Google Scholar]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef]
- Alsubhi, N.; Al-Quwaie, D.; Alrefaei, G.; Alharbi, M.; Binothman, N.; Aljadani, M.; Qahl, S.; Jaber, F.; Huwaikem, M.; Sheikh, H.; et al. Pomegranate Pomace Extract with Antioxidant, Anticancer, Antimicrobial, and Antiviral Activity Enhances the Quality of Strawberry-Yogurt Smoothie. Bioengineering 2022, 9, 735. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Estivi, L.; Bertuuglia, K.; Ivanova, N.; Jukić, M.; Kombenić, D.; Lukinac, J.; Hidalgo, A. Effect of Tomato Pomace Addition on Chemical, Technological, Nutritional, and Sensorial Properties of Cream Crackers. Antioxidants 2022, 11, 2087. [Google Scholar] [CrossRef]
- Luca, M.; Ungureanu-Iuga, M.; Mironeasa, S. Carrot Pomace Characterization for Application in Cereal-Based Products. Appl. Sci. 2022, 12, 7989. [Google Scholar] [CrossRef]
- Angeloni, C.; Malaguti, M.; Prata, C.; Freschi, M.; Barbalace, M.; Hrelia, S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants 2023, 12, 94. [Google Scholar] [CrossRef]
- Moro, K.; Bender, A.; Da Silva, L.; Penna, N. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds from Grape Pomace: A Review. Food Bioprocess Technol. 2021, 14, 1407–1431. [Google Scholar] [CrossRef]
- Ghendov-Moosanu, A.; Cojocari, D.; Balan, G.; Patras, A.; Lung, I.; Soran, M.; Opriş, O.; Cristea, E.; Sturza, R. Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules 2022, 27, 1610. [Google Scholar] [CrossRef]
- Firdous, N.; Moradinezhad, F.; Farooq, F.; Dorostkar, M. Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food Chem. 2023, 407, 135186. [Google Scholar] [CrossRef] [PubMed]
- Channa, I.; Ashfaq, J.; Siddiqui, M.; Chandio, A.; Shar, M.; Alhazaa, A. Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications. Polymers 2022, 14, 5020. [Google Scholar] [CrossRef]
- Socaciu, M.; Câmpia, V.; Dabija, D.; Fogarasi, M.; Semeniuc, C.; Podar, A.; Vodnar, D. Assessing Consumers’ Preference and Loyalty towards Biopolymer Films for Food Active Packaging. Coatings 2022, 12, 1770. [Google Scholar] [CrossRef]
- Ștefănescu, B.; Socaciu, C.; Vodnar, D. Recent Progress in Functional Edible Food Packaging Based on Gelatin and Chitosan. Coatings 2022, 12, 1815. [Google Scholar] [CrossRef]
- Navarre, N.; Mogollón, J.; Tukker, A.; Barbarossa, V. Recycled plastic packaging from the Dutch food sector pollutes Asian Oceans. Resour. Conserv. Recycl. 2022, 185, 106508. [Google Scholar] [CrossRef]
- Paolo, L.; Abbate, S.; Celani, E.; Battista, D.; Candeloro, G. Carbon Footprint of Single-Use Plastic Items and Their Substitution. Sustainability 2022, 14, 16563. [Google Scholar] [CrossRef]
- Bargagli, R.; Rota, E. Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems. Animals 2023, 13, 162. [Google Scholar] [CrossRef]
- Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 27 June 2023).
- Tee, Z.; Zaidel, D.; Jusoh, Y.; Muhamad, I.; Hashim, Z. Encapsulation of Milk Protein with Inulin for Improved Digestibility. J. Hum. Centered Technol. 2022, 1, 26–32. [Google Scholar] [CrossRef]
- Tauferova, A.; Pospiech, M.; Javurkova, Z.; Tremlova, B.; Dordevic, D.; Jancikova, S.; Tesikova, K.; Zdarsky, M.; Vitez, T.; Vitezova, M. Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace. Polymers 2021, 13, 2578. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Zabot, G.; Rodrigues, F.; Ody, L.; Tres, M.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Q.; Wang, Y.; Shi, F.; Fan, H.; Zhang, Y.; Lai, S.; Li, Z.; Li, L.; Sun, Y. Effect of Edible Carboxymethyl Chitosan-Gelatin Based Coating on the Quality and Nutritional Properties of Different Sweet Cherry Cultivars during Postharvest Storage. Coatings 2021, 11, 396. [Google Scholar] [CrossRef]
- Jati, I.; Setijawaty, E.; Utomo, A.; Darmoatmodjo, L. The Application of Aloe vera Gel as Coating Agent to Maintain the Quality of Tomatoes during Storage. Coatings 2022, 12, 1480. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings- A review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Liu, B.; Xin, Q.; Zhang, M.; Chen, J.; Lu, Q.; Zhou, X.; Li, X.; Zhang, W.; Feng, W.; Pei, H.; et al. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2023, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Nehra, A.; Biswas, D.; Siracusa, V.; Roy, S. Natural Gum-Based Functional Bioactive Films and Coatings: A Review. Int. J. Mol. Sci. 2023, 24, 485. [Google Scholar] [CrossRef]
- Gniewosz, M.; Pobiega, K.; Olbryś, N.; Kraśniewska, K.; Synowiec, A. The Effect of Ethanol Propolis Extracts on Inhibition of Growth of Fusarium solani on Hen Eggs. Appl. Sci. 2023, 13, 315. [Google Scholar] [CrossRef]
- Safari, Z.; Ding, P.; Nakasha, J.; Yusoff, S. Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. Coatings 2021, 11, 367. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, H.; Guo, X.; Qin, Y.; Shen, P.; Peng, Q. A Novel Sodium Alginate-Carnauba Wax Film Containing Calcium Ascorbate: Structural Properties and Preservative Effect on Fresh-Cut Apples. Molecules 2023, 28, 367. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Dong, Q.; Xu, C.; Deng, S.; Kang, Y.; Fan, M.; Li, L. Application of functionalized chitosan in food: A review. Int. J. Biol. Macromol. 2023, 235, 123716. [Google Scholar] [CrossRef]
- Qi, C.; Chi, Z.; Liu, G.; Wang, P.; Chi, Z. A new high molecular weight polymalate coating film on grape. Ind. Crops Prod. 2023, 202, 116994. [Google Scholar] [CrossRef]
- Zheng, K.; Li, B.; Liu, Y.; Wu, D.; Bai, Y.; Xiang, Q. Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. LWT 2023, 176, 114547. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Li, R. Effects of chitosan-based coatings incorporated with ɛ-polylysine and ascorbic acid on the shelf-life of pork. Food Chem. 2022, 309, 133206. [Google Scholar] [CrossRef] [PubMed]
- Pavinatto, A.; Mattos, A.; Malpass, A.; Okura, M.; Balogh, D.; Sanfelice, R. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Miki, K.; Ramos, A.; Teixeira-Costa, B. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [Google Scholar] [CrossRef]
- Muñoz-Nuñez, C.; Cuervo-Rodríguez, R.; Echeverría, C.; Fernández-García, M.; Muñoz-Bonilla, A. Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films. Carbohydr. Polym. 2023, 302, 120438. [Google Scholar] [CrossRef]
- Davidović, S.; Miljković, M.; Gordic, M.; Cabrera-Barjas, S.; Nesic, A.; Dimitrijević-Branković, S. Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. Polymers 2021, 13, 4252. [Google Scholar] [CrossRef]
- Bharti, B.; Bhuvana, T.; Chandraprakash, C. Burst and Physicochemical Characteristics of Glycerol-Added Chitosan Films for Food Packaging. ACS Food Sci. Technol. 2023, 3, 772–780. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Xu, S.; Shao, P.; Li, J.; Chen, Z.; Wang, X.; Lin, Y.; Renard, C. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1030–1057. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021, 45, e15489. [Google Scholar] [CrossRef]
- Andrade, M.; Rodrigues, P.; Barros, C.; Cruz, V.; Machado, A.; Barbosa, C.; Coelho, A.; Furtado, R.; Correia, C.; Saraiva, M.; et al. Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract. Coatings 2023, 13, 93. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2022; online ahead of print. [Google Scholar]
- Teles, M.; Adão, P.; Afonso, C.; Bernardino, R.; Guedes, M.; Baptista, R.; Bernardino, S. Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica. Coatings 2022, 12, 148. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Roy, S.; Purohit, S.; Ghosh, T. Biopolymers for Food Packaging and Biomedical Applications: Options or Obligations? Coatings 2022, 12, 1261. [Google Scholar] [CrossRef]
- Choleva, M.; Matalliotaki, E.; Antoniou, S.; Asimomyti, E.; Drouka, A.; Stefani, M.; Yannakoulia, M.; Fragopoulou, E. Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2023, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; Angelis, D. The Importance of Edible Films and Coatings for Sustainable Food Development. Foods 2022, 11, 3221. [Google Scholar] [CrossRef]
- Hashemi, S.; Khorshidian, N.; Mohammadi, M. An insight to potential application of synbiotic edible films and coatings in food products. Front. Nutr. 2022, 9, 875368. [Google Scholar] [CrossRef] [PubMed]
- Safari, Z.; Ding, P.; Nakasha, J.; Yusoff, S. Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage. Coatings 2020, 10, 1222. [Google Scholar] [CrossRef]
- Pavlath, A.E.; Orts, W. Edible films and coatings: Why, what, and how? In Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar]
- Wang, P.; Li, Y.; Zhang, C.; Que, F.; Weiss, J.; Zhang, H. Characterization and antioxidant activity of trilayer gelatin/dextran-propyl gallate/gelatin films: Electrospinning versus solvent casting. LWT 2020, 128, 109536. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, W.; Biswas, D.; Ramakrishnan, R.; Rhim, J. Grapefruit Seed Extract-Added Functional Films and Coating for Active Packaging Applications: A Review. Molecules 2023, 28, 730. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhai, X.; Wu, Y.; Li, C.; Zhang, R.; Sun, C.; Wang, W.; Hou, H. Effects of natural wax types on the physicochemical properties of starch/gelatin edible films fabricated by extrusion blowing. Food Chem. 2023, 401, 134081. [Google Scholar] [CrossRef]
- Olawuyi, I.; Lee, W. Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers 2022, 14, 4884. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Perera, K.; Pradhan, D.; Duffy, B.; Jaiswal, A.; Jaiswal, S. Active Packaging Film Based on Poly Lactide-Poly(butylene adipate-co-terephthalate) Blends Incorporated with Tannic Acid and Gallic Acid for the Prolonged Shelf Life of Cherry Tomato. Coatings 2022, 12, 1902. [Google Scholar] [CrossRef]
- Oldoni, F.; Bernardo, M.; Filho, J.; Aguiar, A.; Moreira, F.; Mattoso, L.; Colnago, L.; Ferreira, M. Valorization of mangoes with internal breakdown through the production of edible films by continuous solution casting. LWT 2021, 145, 111339. [Google Scholar] [CrossRef]
- Agüero, A.; Perianes, E.; Muelas, S.; Lascano, D.; García-Soto, M.; Peltzer, M.; Balart, R.; Arrieta, M. Plasticized Mechanical Recycled PLA Films Reinforced with Microbial Cellulose Particles Obtained from Kombucha Fermented in Yerba Mate Waste. Polymers 2023, 15, 285. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Orviz, S.; Rendueles, M.; Días, M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings—A review. Food Res. Int. 2023, 164, 112381. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, S.; Su, J.; Zhu, M.; Zhou, M.; Chen, T.; Han, Y. Recent advances in carrageenan-based films for food packaging applications. Front. Nutr. 2022, 9, 1004588. [Google Scholar] [CrossRef]
- Popescu, P.; Palade, L.; Nicolae, I.; Popa, E.; Miteluț, A.; Drăghici, M.; Matei, F.; Popa, M. Chitosan-Based Edible Coatings Containing Essential Oils to Preserve the Shelf Life and Postharvest Quality Parameters of Organic Strawberries and Apples during Cold Storage. Foods 2022, 11, 3317. [Google Scholar] [CrossRef]
- Tampau, A.; González-Martínez, C.; Chiralt, A. Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. React. Funtional Polym. 2020, 153, 104603. [Google Scholar] [CrossRef]
- Okcu, Z.; Yavuz, Y.; Kerse, S. Edible film and coating applications in fruits and vegetables. Alinteri J. Agric. Sci. 2018, 33, 221–226. [Google Scholar] [CrossRef]
- Herliana, H.; Yusuf, H.; Laviana, A.; Wandawa, G.; Cahyanto, A. Characterization and Analysis of Chitosan-Gelatin Composite-Based Biomaterial Effectivity as Local Hemostatic Agent: A Systematic Review. Polymers 2023, 15, 575. [Google Scholar] [CrossRef]
- Melo, N.; Soares, B.; Diniz, K.; Leal, C.; Canto, D.; Flores, M.; Tavares-Filho, J.; Galembeck, A.; Stamford, T.; Stamford-Arnaud, T.; et al. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol. Technol. 2018, 139, 56–66. [Google Scholar] [CrossRef]
- Elgadir, M.; Mariod, A. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2023, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Picos-Corrales, L.; Morales-Burgos, A.; Ruelas-Leyva, J.; Crini, G.; Garcia-Armenta, E.; Jimenez-Lam, S.; Ayón-Reyna, L.; Rocha-Alonzo, F.; Calderón-Zamora, L.; Osuna-Martínez, U.; et al. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmen-tal Protection. Polymers 2023, 153, 526. [Google Scholar] [CrossRef] [PubMed]
- Strnad, S.; Zemljič, L. Cellulose–Chitosan Functional Biocomposites. Polymers 2023, 15, 425. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Ma, J.; Ye, Y.; Chen, Y.; Qian, J. Introduction of Curdlan Optimizes the Comprehensive Properties of Methyl Cellulose Films. Foods 2023, 12, 547. [Google Scholar] [CrossRef]
- Júnior, L.; Gonçalves, S.; Silva, R.; Martins, J.; Vicente, A.; Alves, R.; Vieira, R. Effect of green propolis extract on functional properties of active pectin-based films. Food Hydrocoll. 2022, 131, 107746. [Google Scholar] [CrossRef]
- Roman-Benn, A.; Contador, C.; Li, M.; Lam, H.; Ah-Hen, K.; Ulloa, P.; Ravanal, M. Pectin: An overview of sources, extraction and applications in food products and health. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Breceda-Hernandez, G.; Martínez-Ruiz, R.; Serna-Guerra, L.; Hernández-Carrilo, G. Effect of a pectin edible coating obtained from orange peels with lemon essential oil on the shelf life of table grapes (Vitis vinífera L. var. Red Globe). Int. Food Res. J. 2020, 27, 585–596. [Google Scholar]
- Perera, K.; Prendeville, J.; Jaiswal, A.; Jaiswal, S. Cold Plasma Technology in Food Packaging. Coatings 2022, 12, 1896. [Google Scholar] [CrossRef]
- Stach, M.; Kolniak-Ostek, J. The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion. Foods 2023, 12, 515. [Google Scholar] [CrossRef]
- Sun, X.; Xue, Z.; Sun, M.; Zhang, Y.; Zhang, Y.; Fu, H.; Zhang, Y.; Wang, P. Characterization of a Novel Alginate Lyase with Two Alginate Lyase Domains from the Marine Bacterium Vibrio sp. C42. Mar. Drugs 2022, 20, 746. [Google Scholar] [CrossRef] [PubMed]
- Souza, W.; Lucena, F.; Silva, K.; Martins, L.; Castro, R.; Sato, H. Influence of edible coatings composed of alginate, galactomannans, cashew gum, and gelatin on the shelf-life oof grape cultivar ‘Italia’: Physiochemical and bioactive properties. LWT 2021, 152, 112315. [Google Scholar] [CrossRef]
- Prasad, N.; Thombare, N.; Sharma, S.; Kumar, S. Gum arabic—A versatile natural gum: A review on production, processing, properties and applications. Ind. Crops Prod. 2022, 187, 115304. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Huang, Z.; Wu, S.; Chen, Y.; Gao, J.; Hu, Y.; Huang, C. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocoll. 2022, 132, 107838. [Google Scholar] [CrossRef]
- Golly, M.; Ma, H.; Sarpong, F.; Dotse, B.; Oteng-Darko, P.; Dong, Y. Shelf-life extension of grape (Pinot noir) by xanthan gum enriched with ascorbic and citric acid during cold temperature storage. J. Food Sci. Technol. 2019, 56, 4867–4878. [Google Scholar] [CrossRef]
- Amani, F.; Rezaei, A.; Akbari, H.; Dima, C.; Jafari, S. Active Packaging Films Made by Complex Coacervation of Tragacanth Gum and Gelatin Loaded with Curcumin; Characterization and Antioxidant Activity. Foods 2022, 11, 3168. [Google Scholar] [CrossRef]
- Boamah, P.; Afoakwah, N.; Onumah, J.; Osei, E.; Mahunu, G. Physicochemical Properties, Biological Properties and Applications of Gum Tragacanth—A Review. Carbohydr. Polym. Technol. Appl. 2023, 5, 100288. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Chen, L.; Cao, J.; Jiang, W. Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocoll. 2023, 136, 108278. [Google Scholar] [CrossRef]
- Minh, N.; Pham, V.; Tuan, T.; Tuyen, T.; Mai, D. Application of Guar Gum as Edible Coating to Prolong Shelf Life of Red Chilli Pepper (Capsicum frutescens L.) Fruit during Preservation. J. Pharm. Sci. Res 2019, 11, 1474–1478. [Google Scholar]
- Jiménez-Arias, D.; Morales-Sierra, S.; Silva, P.; Carrêlo, H.; Gonçalves, A.; Ganança, J.; Nunes, N.; Gouveia, C.; Alves, S.; Borges, J.; et al. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants 2023, 12, 55. [Google Scholar] [CrossRef]
- Agarwal, D.; Kim, E.; Feng, L.; Wade, C.; Moggré, G.; Morgenstern, M.; Hedderley, D. Microstructure, rheological and water mobility behaviour of plant-based protein isolates (pea and quinoa) and locust bean gum mixtures. Food Res. Int. 2023, 164, 112311. [Google Scholar] [CrossRef] [PubMed]
- Kian-Pour, N.; Yildirim-Yalcin, M.; Kurt, A.; Ozmen, D.; Toker, O. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll. 2023, 138, 108470. [Google Scholar] [CrossRef]
- Mukherjee, K.; Dutta, P.; Badwaik, H.; Saha, A.; Das, A.; Giri, T. Food industry applications of Tara gum and its modified forms. Food Hydrocoll. Health 2023, 3, 100107. [Google Scholar] [CrossRef]
- Pirsa, S.; Hafezi, K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem. 2023, 399, 133967. [Google Scholar] [CrossRef]
- Ansarian, E.; Aminzare, M.; Azar, H.; Mehrasbi, M.; Bimakr, M. Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: In vitro antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage. Meat Sci. 2022, 185, 108716. [Google Scholar] [CrossRef]
- Thombare, N.; Kumar, S.; Kumari, U.; Sakare, P.; Yogi, R.; Prasad, N.; Sharma, K. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int. J. Biol. Macromol. 2022, 215, 203–223. [Google Scholar] [CrossRef]
- Vaishali; Sharma, H.; Sharma, A.; Gajera, A. Effect of shellac coating on minimally processed grapes. Int. J. Chem. Stud. 2019, 7, 1843–1848. [Google Scholar]
- Eshghi, S.; Karimi, R.; Shiri, A.; Karami, M.; Moradi, M. The novel edible coating based on chitosan and gum ghatti to improve the quality and safety of ‘Rishbaba’ table grape during cold storage. J. Food Meas. Charact. 2021, 15, 3683–3693. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 153, 345–355. [Google Scholar] [CrossRef]
- Ghiasi, F.; Golmakani, M. Innovative design of bio-functional Persian gum-based edible films by incorporating crocin and cinnamaldehyde: Free versus single and double emulsion fabrication techniques. Food Hydrocoll. 2023, 135, 108164. [Google Scholar] [CrossRef]
- Sani, M.; Khezerlou, A.; Tavassoli, M.; Mohammadi, K.; Hassani, S.; Ehsani, A.; McClements, D. Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. Colloids Interfaces 2022, 6, 57. [Google Scholar] [CrossRef]
- Tafa, K.; Satheesh, N.; Abera, W. Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon 2023, 9, e13160. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, F.; Martelli, S.; Caon, T.; Velasco, J.; Mei, L. Edible films and coatings based on starch/gelatin: Film properties and Effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Tudu, M.; Samanta, A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur. Polym. J. 2023, 184, 111801. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, C.; Zhang, W.; Lei, W.; Wang, D.; Zhou, X. Novel grasshopper protein/soy protein isolate/pullulan ternary blend with hesperidin derivative for antimicrobial edible film. Arab. J. Chem. 2023, 16, 104563. [Google Scholar] [CrossRef]
- Kumar, S.; Boro, J.; Ray, D.; Mukherjee, A.; Dutta, J. Bionanocomposite films of agar incorporated with ZnO nanoparticles as na active packaging material for shelf life extension of green grape. Heliyon 2019, 5, e01867. [Google Scholar] [CrossRef] [Green Version]
- Piña-Barrera, A.; Álvarez-Román, R.; Báez-González, J.; Amaya-Guerra, C.; Rivas-Morales, C.; Gallardo-Rivera, C.; Galindo-Rodríguez, S. Application of a Multisystem Coating Based on Polymeric Nanocapsules Containing Essential Oil of Thymus vulgaris L. to Increase the Shelf Life of Table Grapes (Vitis vinifera L.). IEEE Trans. NanoBiosci. 2019, 18, 549–557. [Google Scholar] [CrossRef]
- Yan, Y.; Duan, S.; Zhang, H.; Liu, Y.; Li, C.; Hu, B.; Liu, A.; Wu, D.; He, J.; Wu, W. Preparation and characterization of Konjac glucomannan and pullulan composite films for strawberry preservation. Carbohydr. Polym. 2020, 243, 116446. [Google Scholar] [CrossRef]
- Lu, P.; Guo, J.; Fan, J.; Wang, P.; Yan, X. Combined effect of konjac glucomannan addition and ultrasound treatment on the physical and physicochemical properties of frozen dough. Food Chem. 2023, 411, 135516. [Google Scholar] [CrossRef]
- Tokatli, K.; Demirdöven, A. Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Sci. Hortic. 2020, 259, 108656. [Google Scholar] [CrossRef]
- Prathibhani, H.; Kumarihami, C.; Kwack, Y.; Kim, J.; Kim, J. Application of chitosan as edible coating to enhance storability and fruit quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292, 110647. [Google Scholar]
- Parvin, N.; Rahman, A.; Roy, J.; Rashid, H.; Paul, N.; Mahamud, A.; Imran, S.; Sakil, A.; Uddin, F.; Molla, E.; et al. Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.). Horticulturae 2023, 9, 64. [Google Scholar] [CrossRef]
- Nhung, D.; Thao, C.; Tu, N.; Phong, T. Effect of chitosan coating on quality of lychee during storage. Vietnam J. Chem. 2018, 56, 292–296. [Google Scholar]
- Zhao, X.; Tian, R.; Zhou, J.; Liu, Y. Multifunctional chitosan/grape seed extract/silver nanoparticle composite for food packaging application. Int. J. Biol. Macromol. 2022, 207, 152–160. [Google Scholar] [CrossRef]
- Vilela, A.; Cruz, I.; Oliveira, I.; Pinto, A.; Pinto, T. Sensory and Nutraceutical Properties of Infusions Prepared with Grape Pomace and Edible-Coated Dried–Minced Grapes. Foods 2022, 12, 443. [Google Scholar] [CrossRef]
- Algarni, E.; Elnaggar, I.; El-wahed, A.; Taha, I.; AL-Jumayi, H.; Elhamamsy, S.; Mahmoud, S.; Fahmy, A. Effect of Chitosan Nanoparticles as Edible Coating on the Storability and Quality of Apricot Fruits. Polymers 2022, 14, 2227. [Google Scholar] [CrossRef]
- Parijadi, A.; Yamamoto, K.; Ikram, M.; Dwivany, F.; Wikantika, K.; Putri, S.; Fukusaki, E. Metabolome Analysis of Banana (Musa acuminata) Treated With Chitosan Coating and Low Temperature Reveals Different Mechanisms Modulating Delayed Ripening. Front. Sustain. Food Syst. 2022, 6, 835978. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Ullah, S.; Al-Azri, M.; Bekhit, A.; Karam, L.; Albratty, M.; Aldawsari, M.; Anwer, M. Combined Effect of Drying Temperature and Varied Gelatin Concentration on Physicochemical and Antioxidant Properties of Ginger Oil Incorporated Chitosan Based Edible Films. Foods 2023, 12, 364. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Yu, Z.; Ji, Y.; Bourg, V.; Bilgen, M.; Meredith, J. Chitin- and cellulose-based sustainable barrier materials: A review. Emergent Mater. 2020, 3, 919–936. [Google Scholar] [CrossRef]
- Tapias, Y.; Monte, M.; Peltzer, M.; Sallvay, A. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chem. 2022, 372, 131346. [Google Scholar] [CrossRef]
- Çavdaroğlua, E.; Büyüktaş, D.; Farris, S.; Yemenicioğlu, A. Novel edible films of pectins extracted from low-grade fruits and stalk wastes of sun-dried figs: Effects of pectin composition and molecular properties on film characteristics. Food Hydrocoll. 2023, 135, 108136. [Google Scholar] [CrossRef]
- Basak, S.; Annapure, U. Rheological performance of film-forming solutions and barrier properties of films fabricated from cold plasma-treated high methoxyl apple pectin and crosslinked by Ca2+: Impact of plasma treatment voltage. Int. J. Biol. Macromol. 2023, 227, 938–951. [Google Scholar] [CrossRef]
- Ren, W.; Qiang, T.; Chen, L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll. 2022, 129, 107643. [Google Scholar] [CrossRef]
- Ismillayli, N.; Harmiati, H.; Handayani, S.; Hermanto, D. Effect of coating sliced pineapple (Ananas comosus) using carrageenan-chitosan edible film on vitamin C loss. AIP Conf. Proc. 2023, 2588, 020011. [Google Scholar]
- Zhang, Y.; Man, J.; Li, J.; Xing, Z.; Zhao, B.; Ji, M.; Xia, E.; Li, J. Preparation of the alginate/carrageenan/shellac films reinforced with cellulose nanocrystals obtained from enteromorpha for food packaging. Int. J. Biol. Macromol. 2022, 218, 519–532. [Google Scholar] [CrossRef]
- Borchard, W.; Kenning, A.; Kapp, A.; Mayer, C. Phase diagram of the system sodium alginate/water: A model for biofilms. Int. J. Biol. Macromol. 2005, 35, 247–256. [Google Scholar] [CrossRef]
- Annisa, V.; Sulaiman, T.; Nugroho, A.K.; Nugroho, A.G.; Kutsyk, R. Characterization of Alginate with Natural Polymers Combination for Drug Encapsulation. J. Pharm. Sci. 2022, 31, 150–159. [Google Scholar] [CrossRef]
- Salehi, F. Edible Coating of Fruits and Vegetables Using Natural Gums: A Review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Molnar, D.; Novotni, D.; Kurek, M.; Galić, K.; Iveković, D.; Bionda, H.; Ščetar, M. Characteristics of edible films enriched with fruit by-products and their application on cookies. Food Hydrocoll. 2023, 135, 108191. [Google Scholar] [CrossRef]
- Tahir, H.; Xiaobo, Z.; Jiyong, S.; Mahunu, G.; Zhai, X.; Mariod, A. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia senegal) edible coating. Food Biochem. 2018, 42, e12527. [Google Scholar] [CrossRef]
- Le, K.; La, D.; Nguyen, T.; Nguyen, M.; Vo, A.; Nguyen, M.; Tran, D.; Chang, S.; Nguyen, X.; Nguyen, D. Fabrication of Cleistocalyx operculatus extracts/chitosan/gum arabic composite as an edible coating for preservation of banana. Prog. Org. Coat. 2021, 161, 106550. [Google Scholar] [CrossRef]
- Morodi, V.; Kaseke, T.; Fawole, O. Impact of Gum Arabic Coating Pretreatment on Quality Attributes of Oven-Dried Red Raspberry (Rubus idaeus L.). Fruit. Process. 2022, 10, 1629. [Google Scholar] [CrossRef]
- Taher, M.; Lo’ay, A.; Gouda, M.; Limam, S.; Abdelkader, M.; Osman, S.; Firky, M.; Ali, E.; Mohamed, S.; Khalil, H.; et al. Impacts of Gum Arabic and Polyvinylpyrrolidone (PVP) with Salicylic Acid on Peach Fruit (Prunus persica) Shelf Life. Molecules 2022, 27, 2595. [Google Scholar] [CrossRef]
- Kawhena, T.; Opara, U.; Fawole, O. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022, 11, 593. [Google Scholar] [CrossRef]
- El-Gioushy, S.; Abdelkader, M.; Mahmound, M.; Ghit, H.; Fikry, M.; Baahloul, A.; Morsy, A.; Lo’ay, A.; Abdelaziz, A.; Alhaithloul, H.; et al. The Effects of a Gum Arabic-Based Edible Coating on Guava Fruit Characteristics during Storage. Coatings 2022, 12, 90. [Google Scholar] [CrossRef]
- Lima, M.; Carneiro, L.; Machado, M.; Dias, A.; Zavareze, E.; Prentice, C.; Moreira, A. Application of Films Based on Chitosan and Xanthan Gum in Refrigerated Fish Conservation. Braz. Arch. Biol. Technol. 2020, 63, e20190046. [Google Scholar] [CrossRef]
- Shubham; Mishra, N.; Dongariyal, A.; Rai, R.; Arya, M. Effect of edible coating and packaging on postharvest life and quality of litchi (Litchi chinensis Sonn.) fruits during storage. J. Pharmacogn. Phytochem. 2020, 9, 517–526. [Google Scholar]
- Li, T.; Liu, R.; Zhang, C.; Meng, F.; Wang, L. Developing a green film from locust bean gum/carboxycellulose nanocrystal for fruit preservation. Future Foods 2021, 4, 100072. [Google Scholar] [CrossRef]
- Salarbashi, D.; Bazeli, J.; Fahmideh-Rad, E. Fenugreek seed gum: Biological properties, chemical modifications, and structural analysis—A review. Int. J. Biol. Macromol. 2019, 138, 386–393. [Google Scholar] [CrossRef]
- Al-Shammari, B.; Al-Ali, R.; Al-Sahi, A. The influence of Fenugreek Seeds Gum on Quality of Pan Bread During Storage. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012062. [Google Scholar] [CrossRef]
- Shahabi, N.; Soleimani, S.; Ghorbani, M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int. J. Biol. Macromol. 2023, 231, 123350. [Google Scholar] [CrossRef] [PubMed]
- Azarashkan, Z.; Farahani, S.; Abedinia, A.; Akbarmivehie, M.; Motamedzadegan, A.; Heidarbeigi, J.; Hayaloğlu, A. Co-encapsulation of broccoli sprout extract nanoliposomes into basil seed gum: Effects on in vitro antioxidant, antibacterial and anti-Listeria activities in ricotta cheese. Int. J. Food Microbiol. 2022, 376, 109761. [Google Scholar] [CrossRef]
- Moradi, F.; Emamifar, A.; Ghaderi, N. Effect of basil seed gum based edible coating enriched with echinacea extract on the postharvest shelf life of fresh strawberries. J. Food Meas. Charact. 2019, 13, 1852–1863. [Google Scholar] [CrossRef]
- Naeini, M.; Jafari, A.; Gholamnejad, J.; Vazifeshenas, M. Optimizing shelf life of pomegranate fruits during traditional storage by Tragacanth gum coating. J. Hortic. Postharvest Res. 2020, 3, 49–60. [Google Scholar]
- Jahanshahi, B.; Jafari, A.; Gholamnezhad, J. Effect of edible tragacanth coating on fruit quality of tomato cv. Falkato. J. Hortic. Postharvest Res. 2023, 6, 43–54. [Google Scholar]
- Gahruie, H.; Mirzapour, A.; Ghiasi, F.; Eskandari, H.; Moosavi-Nasab, M.; Hosseini, S. Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT 2022, 153, 112422. [Google Scholar] [CrossRef]
- Du, Y.; Wang, L.; Um, R.; Wang, Y.; Li, Y.; Wu, D.; Wu, C.; Pang, J. Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. Int. J. Biol. Macromol. 2019, 131, 36–42. [Google Scholar] [CrossRef]
- Mostafavi, F.; Zaeim, D. Agar-based edible films for food packaging applications—A review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Xia, K.; Liu, X.; Zhang, X. Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packag. Shelf Life 2022, 34, 100936. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, Z.; Zheng, Y.; Quan, Q.; Wang, W.; Wang, A. Synergistic effect of chitosan and halloysite nanotubes on improving agar film properties. Food Hydrocoll. 2020, 101, 105471. [Google Scholar] [CrossRef]
- Temiz, N.; Özdemir, K. Microbiological and physicochemical quality of strawberries (Fragaria × ananassa) coated with Lactobacillus rhamnosus and inulin enriched gelatin films. Postharvest Biol. Technol. 2021, 173, 111433. [Google Scholar] [CrossRef]
- Chen, K.; Tian, R.; Xu, G.; Wu, K.; Liu, Y.; Jiang, F. Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes. Int. J. Biol. Macromol. 2023, 232, 123359. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Priyadarshi, R.; Souza, C.; Angioletti, B.; Rhim, J. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci. Technol. 2022, 125, 43–53. [Google Scholar] [CrossRef]
- Priyadarhi, R.; Riahi, Z.; Rhim, J. Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of Peanuts. Postharvest Biol. Technol. 2022, 183, 111740. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J. Effect of chitosan modified halloysite on the physical and functional properties of pullulan/chitosan biofilm integrated with rutin. Appl. Clay Sci. 2021, 211, 106205. [Google Scholar] [CrossRef]
- Gan, L.; Jiang, G.; Yang, Y.; Zheng, B.; Zhang, S.; Li, X.; Tian, Y.; Peng, B. Development and characterization of levan/pullulan/chitosan edible films enriched with ε-polylysine for active food packaging. Food Chem. 2022, 388, 132989. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj; Ojha, A.; Singh, R. Preparation and characterization of chitosan—Pullulan blended edible films enrich with pomegranate peel extract. React. Funtional Polym. 2019, 144, 104350. [Google Scholar] [CrossRef]
- Kanmani, P.; Lim, S. Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem. 2013, 141, 1041–1049. [Google Scholar] [CrossRef]
- Xiao, Q.; Tong, Q.; Lim, L. Pullulan-sodium alginate based edible films: Rheological properties of film forming solutions. Carbohydr. Polym. 2012, 87, 1689–1695. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Liu, C.; Zheng, X.; Tang, K. Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. LWT 2021, 138, 110607. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Liu, D.; Zhang, C.; Yi, H.; Liu, D. Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packag. Shelf Life 2022, 34, 100980. [Google Scholar] [CrossRef]
- Fatima, S.; Mir, M.; Khan, M.; Sayyed, R.; Masih, R. The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes. Sustainability 2022, 14, 7881. [Google Scholar] [CrossRef]
- Tadele, D.; Shorey, R.; Mekonnen, T. Fatty acid modified zein films: Effect of fatty acid chain length on the processability and thermomechanical properties of modified zein films. Ind. Crops Prod. 2023, 192, 116028. [Google Scholar] [CrossRef]
- Parlak, M.; Uzuner, K.; Kirac, F.; Ozdemir, S.; Dundar, A.; Sahin, O.; Dagdelen, A.; Saricaoglu, F. Production and characterization of biodegradable bi-layer films from poly(lactic) acid and zein. Int. J. Biol. Macromol. 2023, 227, 1027–1037. [Google Scholar] [CrossRef]
- Babatunde, Q.; Byun, Y. Soil Stabilization Using Zein Biopolymer. Sustainability 2023, 15, 2075. [Google Scholar] [CrossRef]
- Robalo, J.; Lopes, M.; Cardoso, O.; Silva, A.; Ramos, F. Efficacy of Whey Protein Film Incorporated with Portuguese Green Tea (Camellia sinensis L.). Extract for the Preservation of Latin-Style Fresh Cheese. Foods 2022, 11, 1158. [Google Scholar]
- Jones, A.; Sharma, S. Surface and degradation properties of thermoplastic blends from albumin and zein-based plastics. J. Appl. Polym. Sci. 2017, 134, e44646. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, X.; Ren, S.; Wang, J.; Zhang, H. Physicochemical characterization of a zein prepared using a novel aqueous extraction technology and tensile properties of the zein film. Ind. Crops Prod. 2019, 130, 57–62. [Google Scholar] [CrossRef]
- Mouzakitis, C.; Sereti, V.; Matsakidou, A.; Kotsiou, K.; Biliaderis, C.; Lazaridou, A. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocoll. 2022, 132, 107856. [Google Scholar] [CrossRef]
- Xiang, N.; Yao, Y.; Jr, J.; Stout, A.; Fennelly, C.; Sylvia, R.; Schnitzler, A.; Wong, S.; Kaplan, D. Edible films for cultivated meat production. Biomaterials 2022, 287, 121659. [Google Scholar] [CrossRef] [PubMed]
- Djidi, D.; Mignard, N.; Taha, M. Thermosensitive polylactic-acid-based networks. Ind. Crops Prod. 2015, 72, 220–230. [Google Scholar] [CrossRef]
- Lopes, M.; Jardini, A.; Filho, R. Poly(lactic acid) production for tissue engineering applications. Procedia Eng. 2012, 42, 1402–1413. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.; Bueno-Ferrer, C.; Misra, N.; O’Neill, L.; Jiménez, A.; Bourke, P.; Cullen, P. Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innov. Food Sci. Emerg. Technol. 2014, 21, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, Y.; Jin, N.; Li, J.; Dong, S.; Li, S.; Zhang, Z.; Chen, Y. Zein films with porous polylactic acid coatings via cold plasma pre-tratment. Ind. Crops Prod. 2020, 150, 112382. [Google Scholar] [CrossRef]
- Xin, Y.; Yang, C.; Zhang, J.; Xiong, L. Application of Whey Protein-Based Emulsion Coating Treatment in Fresh-Cut Apple Preservation. Foods 2023, 12, 1140. [Google Scholar] [CrossRef]
- Tonyali, B.; Cikrikci, S.; Oztop, M. Physicochemical and microstructural characterization of gum tragacanth added whey protein based films. Food Res. Int. 2018, 105, 1–9. [Google Scholar] [CrossRef]
- Ramos, Ó.; Reinas, I.; Silva, S.; Fernandes, J.; Cerqueira, M.; Pereira, R.; Vicente, A.; Poças, M.; Pintado, M.; Malcata, F. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013, 30, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Galus, S.; Mikus, M.; Ciurzyńska, A.; Janowicz, M. Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Appl. Sci. 2022, 12, 9023. [Google Scholar] [CrossRef]
- Tsironi, M.; Kosma, I.; Badeka, A. The Effect of Whey Protein Films with Ginger and Rosemary Essential Oils on Microbiological Quality and Physicochemical Properties of Minced Lamb Meat. Sustainability 2022, 14, 3434. [Google Scholar] [CrossRef]
- Dianin, I.; Oliveira, A., Jr.; Pimentel, T.; Hernandes, N.; Costa, G. Edible Biofilms Formulated with Whey Protein Isolate and L. Casei Probiotic Culture: Characterization and Application in Tomatoes and Grapes. Chem. Eng. Trans. 2019, 75, 469–474. [Google Scholar]
- Diyana, Z.; Jumaidin, R.; Selamat, M.; Suan, M. Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. Int. J. Biol. Macromol. 2021, 190, 224–232. [Google Scholar] [CrossRef]
- Goslinska, M.; Heinrich, S. Characterization of waxes as possible coating material for organic aerogels. Powder Technol. 2019, 357, 223–231. [Google Scholar] [CrossRef]
- Mendoza-Duarte, M.; Estrada-Moreno, I.; López-Martínez, E.; Vega-Rios, A. Effect of the Addition of Different Natural Waxes on the Mechanical and Rheological Behavior of PLA—A Comparative Study. Polymers 2023, 15, 305. [Google Scholar] [CrossRef]
- León-Zapata, M.; Ventura-Sobrevilla, J.; Salinas-Jasso, T.; Flores-Gallegos, A.; Rodríguuez-Herrera, R.; Pastrana-Castro, L.; Rua-Rodríguez, M.; Aguilar, C. Changes of the shelf life of candelilla wax/tarbush bioactive based-nanocoated apples at industrial level conditions. Sci. Hortic. 2018, 231, 43–48. [Google Scholar] [CrossRef]
- György, É.; Laslo, É.; Salamon, B. Antimicrobial impacts of selected Lamiaceae plants on bacteria isolated from vegetables and their application in edible films. Food Biosci. 2023, 51, 102280. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Utomo, D.; Raemas, A.; Kusworo, T.; Jos, B.; Djaeni, M. Alginate/κ-Carrageenan-Based Edible Films Incorporated with Clove Essential Oil: Physico-Chemical Characterization and Antioxidant-Antimicrobial Activity. Polymers 2021, 13, 354. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Zhang, R.; Liu, L.; Yang, X. Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packag. Shelf Life 2021, 29, 100700. [Google Scholar] [CrossRef]
- Matadamas-Ortiz, A.; Hernández- Hernández, E.; Castaño-Tostado, E.; Amaro-Reyes, A.; García-Almendárez, B.; Velasquez, G.; Regalado-González, C. Long-Term Refrigerated Storage of Beef Using an Active Edible Film Reinforced with Mesoporous Silica Nanoparticles Containing Oregano Essential Oil (Lippia graveolens Kunth). Mol. Sci. 2023, 24, 92. [Google Scholar] [CrossRef] [PubMed]
- Farina, V.; Passafiume, R.; Tinebra, I.; Palazzolo, E.; Sortino, G. Use of Aloe Vera Gel-Based Edible Coating with Natural Anti-Browning and Antioxidant Additives to Improve Post-Harvest Quality of Fresh-Cut ‘Fuji’ Apple. Agronomy 2020, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Al-Harrasi, A.; Bhtaia, S.; Al-Azrii, M.; Makeen, H.; Albratty, M.; Alhazmi, H.; Mohan, S.; Sharma, A.; Behl, T. Correction: Al-Harrasi et al. Development and Characterization of Chitosan and Porphyran Based Composite Edible Films Containing Ginger Essential Oil. Polymers 2022, 14, 2518. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Gao, C.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Int. J. Biol. Macromol. 2019, 134, 230–236. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Rhim, J. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2022, 10, 2789. [Google Scholar] [CrossRef] [PubMed]
- Ucak, I.; Khalily, R.; Carrillo, C.; Tomasevic, I.; Barba, F. Potential of Propolis Extract as a Natural Antioxidant and Antimicrobial in Gelatin Films Applied to Rainbow Trout (Oncorhynchus mykiss) Fillets. Foods 2020, 9, 1584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Roy, S.; Ezati, P.; Yang, D.; Rhim, J. Tannic acid: A green crosslinker for biopolymer-based food packaging films. Trends Food Sci. Technol. 2023, 136, 11–23. [Google Scholar] [CrossRef]
- Garg, R.; Rana, H.; Singh, N.; Goswami, S. Guargum/nanocellulose based novel crosslinked antimicrobial film with enhanced barrier and mechanical properties for food packaging. J. Environ. Chem. Eng. 2023, 11, 109254. [Google Scholar] [CrossRef]
- Venkatesan, R.; Sivaprakash, P.; Kim, I.; Eldesoky, G.; Kim, S. Tannic acid as a crosslinking agent in poly(butylene adipate-co-terephthalate) composite films enhanced with carbon nanoparticles: Processing, characterization, and antimicrobial activities for food packaging. J. Environ. Chem. Eng. 2023, 11, 110194. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Sun, J.; Lv, S. Bioactive Edible Sodium Alginate Films Incorporated with Tannic Acid as Antimicrobial and Antioxidative Food Packaging. Foods 2022, 11, 3044. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, W.; Liang, Z.; Zhan, Y.; McClements, D.; Hu, K. Co-Encapsulation of Tannic Acid and Resveratrol in Zein/Pectin Nanoparticles: Stability, Antioxidant Activity, and Bioaccessibility. Foods 2022, 11, 3478. [Google Scholar] [CrossRef]
- Zhu, Q.; Tan, J.; Li, D.; Zhang, T.; Liu, Z.; Cao, Y. Cross-linked chitosan/tannin extract as a biodegradable and repulpable coating for paper with excellent oil-resistance, gas barrier and UV-shielding. Prog. Org. Coat. 2023, 176, 107399. [Google Scholar] [CrossRef]
- Ianchis, R.; Alexa, R.; Gifu, I.; Marin, M.; Alexandrescu, E.; Constantinescu, R.; Serafim, A.; Nistor, C.; Petcu, C. Novel Green Crosslinked Salecan Hydrogels and Preliminary Investigation of Their Use in 3D Printing. Pharmaceutics 2023, 15, 373. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lei, Y.; Lu, J.; Zhu, R.; Jiao, C.; Xia, R.; Zhang, Z.; Shen, G.; Liu, Y.; Li, S.; et al. Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocoll. 2019, 97, 105208. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.; Ullah, S.; Makeen, H.; Meraya, A.; Albratty, M.; Najmi, A.; Anwer, M. Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications. Polymers 2022, 14, 4065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Roy, S.; Assadpour, E.; Cong, X.; Jafari, S. Cross-linked biopolymeric films by citric acid for food packaging and preservation. Adv. Colloid Interface Sci. 2023, 314, 102886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Yao, Y.; Wu, N.; Xu, M.; Yin, Z.; Zhao, Y.; Tu, Y. Effects of citric acid crosslinking on the structure and properties of ovotransferrin and chitosan composite films. Int. J. Biol. Macromol. 2023, 229, 268–281. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.; Silva, J.; Braz, M.; Almeida, A.; Silvestre, A.; Vilela, C.; Freire, C. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocoll. 2023, 144, 108934. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.; Fang, C.; Wang, D. Characterization of the Antimicrobial Edible Film Based on Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde Blend Crosslinked With Xylose. Front. Nutr. 2022, 9, 796356. [Google Scholar] [CrossRef]
- Villanueva, M.; Gioia, C.; Sisti, L.; Martí, L.; Llorens-Chiralt, R.; Verstichel, S.; Celli, A. Valorization of Ferulic Acid from Agro-Industrial by-Products for Application in Agriculture. Polymers 2022, 14, 2874. [Google Scholar] [CrossRef]
- Quadrado, R.; Macagnan, K.; Moreira, A.; Fajardo, A. Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int. J. Biol. Macromol. 2021, 193, 1032–1042. [Google Scholar] [CrossRef]
- Aliasgharlou, N.; Sana, F.; Khoshbakht, S.; Zolfaghari, P.; Charkhian, H. Fabrication and characterization of boric acid-crosslinked ethyl cellulose and polyvinyl alcohol films as potential drug release systems for topical drug delivery. Turk. J. Chem. 2020, 44, 1723–1732. [Google Scholar] [CrossRef]
- Zhao, S.; Zeng, B.; Pei, R.; Fu, X.; Zhu, M.; Zhang, G.; Jiang, W. Programmable and printable formaldehyde dehydrogenase as an excellent catalyst for biodegradation of formaldehyde. Int. J. Bioprint. 2023, 9, 695. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhao, X.; Xia, Y.; Liu, Z.; Sun, J.; Zhu, S.; Liu, H. Ratiometric fluorescence sensing of formaldehyde in food samples based on bifunctional MOF. Microchim Acta 2023, 190, 36. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Pal, D.; Majumdar, R.; Priyadarshini, M.; Das, R.; Debbarma, G.; Acharya, P. Effect of artificial formaldehyde treatment on textural quality of fish muscles and methods employed for formaldehyde reduction from fish muscles. Food Chem. Adv. 2023, 3, 100328. [Google Scholar] [CrossRef]
- Lin, Y.; Du, H.; Roos, Y.; Miao, S. Transglutaminase crosslinked fish gelatins for emulsion stabilization: From conventional to Pickering emulsions. Food Hydrocoll. 2023, 144, 1088979. [Google Scholar] [CrossRef]
- Dinesh; Wang, H.; Kim, J. Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process. Glob. Chall. 2022, 6, 2200090. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, H.; Cheng, J. Novel Double Cross-Linked Acrylic Acid/Bagasse Cellulose Porous Hydrogel for Controlled Release of Citral and Bacteriostatic Effects. ACS Appl. Mater. Interfaces 2023, 15, 20358–20371. [Google Scholar] [CrossRef]
- Cabezas, R.; Zurob, E.; Gomez, B.; Merlet, G.; Plaza, A.; Araya-Lopez, C.; Romero, J.; Olea, F.; Quijada-Maldonado, Q.; Pino-Soto, L.; et al. Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes. Ind. Eng. Chem. Res. 2022, 61, 17397–17422. [Google Scholar] [CrossRef]
- Meenu, M.; Bansal, V.; Rana, S.; Sharma, N.; Kumar, V.; Arora, V.; Garg, M. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs): Designer solvents for green extraction of anthocyanin. Sustain. Chem. Pharm. 2023, 34, 101168. [Google Scholar] [CrossRef]
- Lin, Z.; Lialu, X.; Jiao, B. Deep eutectic solvents-modified advanced functional materials for pollutant detection in food and the environment. TrAC Trends Anal. Chem. 2023, 159, 116923. [Google Scholar] [CrossRef]
- Teixeira-Costa, B.; Andrade, C. Chitosan as a Valuable Biomolecule from Seafood Industry Waste in the Design of Green Food Packaging. Biomolecules 2021, 11, 1599. [Google Scholar] [CrossRef] [PubMed]
- Hegedüs, I.; Andreidesz, K.; Szentpéteri, J.; Kaleta, Z.; Szabó, L.; Szigeti, K.; Gulyás, B.; Padmanabhan, P.; Budan, F.; Máthé, K. The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int. J. Mol. Sci. 2022, 23, 11165. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, Z.; Kang, J.; Lin, A.; Wang, Z.; Chen, H.; Guo, X.; He, X.; Kang, X. Grape Seed Proanthocyanidins Exert a Neuroprotective Effect by Regulating Microglial M1/M2 Polarisation in Rats with Spinal Cord Injury. Mediat. Inflamm. 2022, 2022, 2579003. [Google Scholar] [CrossRef]
- Tsurumoto, T.; Fujikawa, Y.; Onoda, Y.; Kamimori, M.; Hiramatsu, K.; Tanimoto, H.; Ohta, D.; Okazawa, A. Effect of high-dose 290nm UV-B on resveratrol contente in grape skins. Biosci. Biotechnol. Biochem. 2022, 86, 502–508. [Google Scholar] [CrossRef]
- Gorrasi, G.; Viscusi, G.; Geraldi, C.; Lamberti, E.; Giovinazzo, G. Physicochemical and Antioxidant Properties of White (Fiano cv) and Red (Negroamaro cv) Grape Pomace Skin Based Films. J. Polym. Environ. 2022, 30, 3609–3621. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Stavrou, K.; Michael, C.; Botsaris, G.; Barbouti, A. The Potential of Sun-Dried Grape Pomace as a Multi-Functional Ingredient for Herbal Infusion: Effects of Brewing Parameters on Composition and Bioactivity. Antioxidants 2021, 10, 586. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films, and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, K. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Debeaufort, F.; Karbowiak, T. Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Crit. Rev. Food Sci. Nutr. 2019, 59, 3431–3455. [Google Scholar] [CrossRef]
- Kupervaser, M.G.; Traffano-Schiffo, M.V.; Dellamea, M.L.; Flores, S.K.; Sosa, C. A Trends in starch-based edible films and coatings enriched with tropical fruits extracts: A review. Food Hydrocoll. Health 2023, 4, 100138. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Bai, J. Physiology of fresh-cut fruits and vegetables. In Advances in Fresh-Cut Fruits and Vegetable Processing; CRC Press: Boca Raton, FL, USA, 2011; pp. 87–114. [Google Scholar]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of the effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT-Food Sci. Technol. 2017, 75, 742–750. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advances in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Li, T.; Yun, Z.; Duan, X.; Jiang, Y. Fibroin treatment inhibits chilling injury of banana fruit via energy regulation. Sci. Hortic. 2019, 248, 8–13. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Bowyer, M.; Singh, S.P.; Scarlett, C.J.; Stathopoulos, C.E.; Vuong, Q.V. A starch edible surface coating delays banana fruit ripening. LWT 2019, 100, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Moradinezhad, F.; Ansarifar, E.; Mohammadian Moghaddam, M. Extending the shelf life and maintaining quality of minimally-processed pomegranate arils using ascorbic acid coating and modified atmosphere packaging. J. Food Meas. Charact. 2020, 14, 3445–3454. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.; Zapata, P.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Dorostkar, M.; Moradinezhad, F. Postharvest quality responses of pomegranate fruit (cv. Shishe Kab) to ethanol, sodium bicarbonate dips and modified atmosphere packaging. Adv. Hortic. Sci. 2022, 36, 107–117. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on post-harvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Chitravathi, K.; Chauhan, O.P.; Raju, P.S. Post-harvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings. Postharvest Biol. Technol. 2014, 92, 146–148. [Google Scholar] [CrossRef]
- Massilia, R.M.R.; Mosqueda-Melgar, J.; Martin-Belloso, O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar]
- Eissa, H.A. Effect of chitosan coating on shelf life and quality of fresh cut mushroom. J. Food Qual. 2007, 30, 623–645. [Google Scholar] [CrossRef]
Crosslinker Agents | Advantages | Disadvantages | Ref. | |
---|---|---|---|---|
Green | Tannic acid |
|
| [190,193,194,195] |
Citric acid |
|
| [196,197,198,199,200] | |
Gallic acid |
| - | [198,201] | |
Cinnamaldehyde |
| - | [202] | |
Ferulic acid |
|
| [197,203] | |
Boric acid |
|
| [197,204,205] | |
Chemical | Glutaraldehyde |
|
| [190,191] |
Formaldehyde |
|
| [206,207,208] | |
Transglutaminase |
|
| [209] | |
Acrylic acid |
|
| [210,211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, T.; Pinto, A.; Vilela, A. Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings 2023, 13, 1350. https://doi.org/10.3390/coatings13081350
Pinto T, Pinto A, Vilela A. Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings. 2023; 13(8):1350. https://doi.org/10.3390/coatings13081350
Chicago/Turabian StylePinto, Teresa, Ana Pinto, and Alice Vilela. 2023. "Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products" Coatings 13, no. 8: 1350. https://doi.org/10.3390/coatings13081350
APA StylePinto, T., Pinto, A., & Vilela, A. (2023). Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings, 13(8), 1350. https://doi.org/10.3390/coatings13081350