Investigation of the Structure and Properties of Molybdenum Coatings Produced by Laser-Directed Energy Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. LDED Equipment
2.3. Material Characterization Methods
3. Results and Discussion
3.1. The Investigation of Microstructure of the Molybdenum Coatings on the 25L Carbon Steel
3.2. Tribologcal Tests of the Molybdenum LDED Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. International Organization for Standarization: London, UK, 2021. Available online: https://www.iso.org/standard/74514.html?browse=tc (accessed on 16 February 2023).
- Grigoriev, S.N.; Tarasova, T.V. Possibilities of the technology of additive production for making complex-shape parts and depositing functional coatings from metallic powders. Met. Sci. Heat Treat. 2016, 57, 579–584. [Google Scholar] [CrossRef]
- Khmyrov, R.S.; Grigoriev, S.N.; Okunkova, A.A.; Gusarov, A.V. On the possibility of selective laser melting of quartz glass. Phys. Procedia 2014, 56, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Khmyrov, R.S.; Protasov, C.E.; Grigoriev, S.N.; Gusarov, A.V. Crack-free selective laser melting of silica glass: Single beads and monolayers on the substrate of the same material. Int. J. Adv. Manuf. Technol. 2016, 85, 1461–1469. [Google Scholar] [CrossRef]
- Vasiltsov, V.V.; Galushkin, M.G.; Iliechev, I.N.; Misyurov, A.I.; Panchenko, V. Layer-wise metal-powder laser surfacing: Analytical theory and experiment. Vestnik MGTU Im. N.E. Baumana 2012, 6, 69–77. [Google Scholar]
- Higashi, M.; Ozaki, T. Selective laser melting of pure molybdenum: Evolution of defect and crystallographic texture with process parameters. Mater. Des. 2020, 191, 108588. [Google Scholar] [CrossRef]
- Alinejadian, N.; Wang, P.; Kollo, L.; Prashanth, K.G. Selective laser melting of commercially pure molybdenum by laser rescanning. 3D Print. Addit. Manuf. 2022. [Google Scholar] [CrossRef]
- Fichtner, D.; Schmelzer, J.; Yang, W.; Heinze, C.; Krüger, M. Additive manufacturing of a near-eutectic Mo–Si–B alloy: Processing and resulting properties. Intermetallics 2020, 128, 107025. [Google Scholar] [CrossRef]
- Guo, Z.; Han, R.; Li, Y.; Zhu, Y.; Zhang, B.; Zhang, H. Mo-Si-B Alloy Formed by Optional Laser Melting Process. J. Environ. Anal. Chem. 2022, 2022, 4996265. [Google Scholar] [CrossRef]
- Yan, A.; Atif, A.M.; Wang, X.; Lan, T.; Wang, Z. The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting. Materials 2022, 15, 6230. [Google Scholar] [CrossRef]
- Kaserer, L.; Braun, J.; Stajkovic, J.; Leitz, K.-H.; Tabernig, B.; Singer, P.; Letofsky-Papst, I.; Kestler, H.; Leichtfried, G. Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon. Int. J. Refract. Metals Hard Mater. 2019, 84, 105000. [Google Scholar] [CrossRef]
- Priyanshu, B. SLM Manufacturing of Molybdenum. Ph.D. Dissertation, The University of Sheffield, Sheffield, UK, 2016. [Google Scholar]
- Zhou, W.; Sun, X.; Tsunoda, K.; Kikuchi, K.; Nomura, N.; Yoshimi, K.; Kawasaki, A. Powder fabrication and laser additive manufacturing of MoSiBTiC alloy. Intermetallics 2019, 104, 33–42. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Zhang, D.; Shen, Z.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Attard, B.; Zhang, P.; Kuang, T. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mater. 2018, 19, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Kurzynowski, T.; Smolina, I.; Kurzac, J.; Chlebus, E. Selective Laser Melting of Pure Tungsten. In Proceedings of the 3rd Fraunhofer Direct Digital Manufacturing Conference, Berlin, Germany, 16–17 March 2016. [Google Scholar]
- Iveković, A.; Omidvari, N.; Vrancken, B.; Lietaert, K.; Thijs, L.; Vanmeensel, K.; Vleugels, J.; Kruth, J.P. Selective laser melting of tungsten and tungsten alloys. Int. J. Refract. Met. Hard Mater. 2018, 72, 27–32. [Google Scholar] [CrossRef]
- Roh, G.W.; Park, E.S.; Moon, J.; Lee, H.; Byun, J. Direct energy Deposition of Mo powder prepared by electrode in Duction Melting gas atomization. Arch. Metall. Mater. 2021, 66, 795. [Google Scholar]
- Johnson, J.L.; Palmer, T. Directed energy deposition of molybdenum. Ijrmhm 2019, 84, 105029. [Google Scholar] [CrossRef]
- Tillmann, W.; Schaak, C.; Nellesen, J.; Schaper, M.; Aydinöz, M.U.; Hoyer, K.P. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit. Manuf. 2017, 13, 93–102. [Google Scholar] [CrossRef]
- Harrison, N.J.; Todd, I.; Mumtaz, K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach. Acta Mater. 2015, 94, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Metel, A.S.; Tarasova, T.; Skorobogatov, A.; Podrabinnik, P.; Volosova, M.; Grigoriev, S.N. Quality Diagnostics of Parts Produced by Combined Additive Manufacturing Technology. Metals 2023, 13, 19. [Google Scholar] [CrossRef]
- Metel, A.S.; Tarasova, T.; Skorobogatov, A.; Podrabinnik, P.; Melnik, Y.; Grigoriev, S.N. Feasibility of Production of Multimaterial Metal Objects by Laser-Directed Energy Deposition. Metals 2022, 12, 1566. [Google Scholar] [CrossRef]
- Shelekhov, E.V.; Sviridova, T.A. Programs for X-ray analysis of polycrystals. Metal Sci. Heat Treat. 2000, 42, 309–313. [Google Scholar] [CrossRef]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database–an open-access collection of crystal structures. J. Appl. Cryst. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Elements Composition, % Mass | |||||
---|---|---|---|---|---|---|
Fe | C | Mn | Si | S | P | |
25L steel | Balance | 0.30 | 0.54 | 0.51 | 0.019 | 0.024 |
Material | Elements Composition, % Mass | ||
---|---|---|---|
Mo | Metal Impurities 1, Total | O | |
PMS-M99.9 | Balance | 0.1 | 0.025 |
Material | Flowability, s | Packed Density, g/cm3 | Tap Density, g/cm3 |
---|---|---|---|
PMS-M99.9 | 10.4 | 6.4 | 7.14 |
№ | Parameter | Value |
---|---|---|
1 | Building zone size, mm | 400 × 400 × 400 |
2 | Number of axes | 5 |
3 | Positioning accuracy, mm/m | 0.03 |
4 | Laser wavelength, µm | 1.07 |
5 | Laser wavelength, µm | <3000 |
6 | Lens focus distance, mm | 200 |
7 | Min. laser spot diameter, µm | 1200 |
8 | Feedstock powder particle size, µm | 40–200 |
9 | Powder consumption, g/min | <300 |
Sample | Laser Irradiation Power, W | Scanning Speed, mm/min | Powder Consumption, g/min |
---|---|---|---|
a | 1st layer—500 2nd layer—900 3rd and the following layers—1000 | 300 | 6 |
b | 300 | 4 | |
c | 400 | 6 | |
d | 400 | 4 | |
e | 500 | 400 | 4 |
Technology | Hardness, HV | Density, g/cm3 | Wear Rate W, mm3/Nm |
---|---|---|---|
Vacuum brazing (t = 1120 °C, τ = 10 min) | 182–192 | 10.0–10.2 | 4.9245 × 10−4 |
LDED of the PMS-99.9M Mo powder (Table 5, mode d) | 423–470 | 9.9–10.1 | 3.0529 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasova, T.; Volosova, M.; Skorobogatov, A.; Fedorov, S.V.; Podrabinnik, P.; Kholopov, A.; Grigoriev, S.N. Investigation of the Structure and Properties of Molybdenum Coatings Produced by Laser-Directed Energy Deposition. Coatings 2023, 13, 1365. https://doi.org/10.3390/coatings13081365
Tarasova T, Volosova M, Skorobogatov A, Fedorov SV, Podrabinnik P, Kholopov A, Grigoriev SN. Investigation of the Structure and Properties of Molybdenum Coatings Produced by Laser-Directed Energy Deposition. Coatings. 2023; 13(8):1365. https://doi.org/10.3390/coatings13081365
Chicago/Turabian StyleTarasova, Tatiana, Marina Volosova, Andrey Skorobogatov, Sergey Voldemarovich Fedorov, Pavel Podrabinnik, Andrey Kholopov, and Sergey N. Grigoriev. 2023. "Investigation of the Structure and Properties of Molybdenum Coatings Produced by Laser-Directed Energy Deposition" Coatings 13, no. 8: 1365. https://doi.org/10.3390/coatings13081365
APA StyleTarasova, T., Volosova, M., Skorobogatov, A., Fedorov, S. V., Podrabinnik, P., Kholopov, A., & Grigoriev, S. N. (2023). Investigation of the Structure and Properties of Molybdenum Coatings Produced by Laser-Directed Energy Deposition. Coatings, 13(8), 1365. https://doi.org/10.3390/coatings13081365