Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. Trial Design and Blinding
2.3. Sample Size Estimation
2.4. Bonding Procedure
2.5. Outcome Measures and Follow-up
2.6. Statistical Analysis
3. Results
3.1. Bracket Removal/Failure and Bonding Method
3.2. Survival Time and Bonding Method
3.3. End-of-Treatment Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- dos Santos, A.-L.-C.; Wambier, L.-M.; Wambier, D.-S.; Moreira, K.-M.-S.; Imparato, J.-C.-P.; Chibinski, A.-C.-R. Orthodontic Bracket Bonding Techniques and Adhesion Failures: A Systematic Review and Meta-Analysis. J. Clin. Exp. Dent. 2022, 14, e746–e755. [Google Scholar] [CrossRef] [PubMed]
- Pinho, M.; Manso, M.C.; Almeida, R.F.; Martin, C.; Carvalho, Ó.; Henriques, B.; Silva, F.; Pinhão Ferreira, A.; Souza, J.C.M. Bond Strength of Metallic or Ceramic Orthodontic Brackets to Enamel, Acrylic, or Porcelain Surfaces. Materials 2020, 13, e5197. [Google Scholar] [CrossRef] [PubMed]
- Zachrisson, B.J. A Posttreatment Evaluation of Direct Bonding in Orthodontics. Am. J. Orthod. 1977, 71, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Tandon, P.; Nagar, A.; Singh, G.P.; Singh, A.; Chugh, V.K. A Comparison of Shear Bond Strength of Orthodontic Brackets Bonded with Four Different Orthodontic Adhesives. J. Orthod. Sci. 2014, 3, 29–33. [Google Scholar] [CrossRef]
- Hellak, A.; Rusdea, P.; Schauseil, M.; Stein, S.; Korbmacher-Steiner, H.M. Enamel Shear Bond Strength of Two Orthodontic Self-Etching Bonding Systems Compared to TransbondTM XT. J. Orofac. Orthop. 2016, 77, 391–399. [Google Scholar] [CrossRef]
- Silva, A.L.; Terossi de Godoi, A.P.; Ferraz Facury, A.G.B.; Neves, J.G.; Correr, A.B.; Correr-Sobrinho, L.; Costa, A.R. Comparison of the Shear Bond Strength between Metal Brackets and TransbondTM XT, FiltekTM Z250 and FiltekTM Z350 before and after Gastroesophageal Reflux: An in Vitro Study. Int. Orthod. 2022, 20, 100664. [Google Scholar] [CrossRef]
- Bishara, S.E.; Oonsombat, C.; Soliman, M.M.A.; Warren, J.J.; Laffoon, J.F.; Ajlouni, R. Comparison of Bonding Time and Shear Bond Strength between a Conventional and a New Integrated Bonding System. Angle Orthod. 2005, 75, 237–242. [Google Scholar] [CrossRef]
- Akl, R.; Ghoubril, J.; Le Gall, M.; Shatila, R.; Philip-Alliez, C. Evaluation of Shear Bond Strength and Adhesive Remnant Index of Metal APCTM Flash-Free Adhesive System: A Comparative in Vitro Study with APCTM II and Uncoated Metal Brackets. Int. Orthod. 2022, 20, 100705. [Google Scholar] [CrossRef]
- Yassaei, S.; Davari, A.; Goldani Moghadam, M.; Kamaei, A. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding. J. Dent. 2014, 11, 282–289. [Google Scholar]
- Gorton, J.; Featherstone, J.D.B. In Vivo Inhibition of Demineralization around Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 10–14. [Google Scholar] [CrossRef]
- Summers, A.; Kao, E.; Gilmore, J.; Gunel, E.; Ngan, P. Comparison of Bond Strength between a Conventional Resin Adhesive and a Resin-Modified Glass Ionomer Adhesive: An in Vitro and in Vivo Study. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Prylińska-Czyżewska, A.; Maciejewska-Szaniec, Z.; Olszewska, A.; Polichnowska, M.; Grabarek, B.O.; Dudek, D.; Sobański, D.; Czajka-Jakubowska, A. Comparison of Bond Strength of Orthodontic Brackets Onto the Tooth Enamel of 120 Freshly Extracted Adult Bovine Medial Lower Incisors Using 4 Adhesives: A Resin-Modified Glass Ionomer Adhesive, a Composite Adhesive, a Liquid Composite Adhesive, and a One-Step Light-Cured Adhesive. Med. Sci. Monit. 2022, 28, e938867. [Google Scholar] [CrossRef] [PubMed]
- Feizbakhsh, M.; Aslani, F.; Gharizadeh, N.; Heidarizadeh, M. Comparison of Bracket Bond Strength to Etched and Unetched Enamel under Dry and Wet Conditions Using Fuji Ortho LC Glass-Ionomer. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 30–35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rosenbach, G.; Cal-Neto, J.P.; Oliveira, S.R.; Chevitarese, O.; Almeida, M.A. Effect of Enamel Etching on Tensile Bond Strength of Brackets Bonded in Vivo with a Resin-Reinforced Glass Ionomer Cement. Angle Orthod. 2007, 77, 113–116. [Google Scholar] [CrossRef]
- Hamdane, N.; Kmeid, R.; Khoury, E.; Ghoubril, J. Effect of Sandblasting and Enamel Deproteinization on Shear Bond Strength of Resin-Modified Glass Ionomer. Int. Orthod. 2017, 15, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Ghoubril, V.; Ghoubril, J.; Khoury, E. A Comparison between RMGIC and Composite with Acid-Etch Preparation or Hypochlorite on the Adhesion of a Premolar Metal Bracket by Testing SBS and ARI: In Vitro Study. Int. Orthod. 2020, 18, 127–136. [Google Scholar] [CrossRef]
- Ghoubril, V.; Changotade, S.; Lutomski, D.; Ghoubril, J.; Chakar, C.; Abboud, M.; Hardan, L.; Kharouf, N.; Khoury, E. Cytotoxicity of V-Prep Versus Phosphoric Acid Etchant on Oral Gingival Fibroblasts. J. Funct. Biomater. 2022, 13, 266. [Google Scholar] [CrossRef]
- Moosavi, H.; Ahrari, F.; Mohamadipour, H. The Effect of Different Surface Treatments of Demineralised Enamel on Microleakage under Metal Orthodontic Brackets. Prog. Orthod. 2013, 14, 2. [Google Scholar] [CrossRef]
- Nassif, M.S.; El-Korashy, D.I. Phosphoric Acid/Sodium Hypochlorite Mixture as Dentin Conditioner: A New Approach. J. Adhes. Dent. 2009, 11, 455–460. [Google Scholar] [CrossRef]
- Arnold, R.W.; Combe, E.C.; Warford, J.H. Bonding of Stainless Steel Brackets to Enamel with a New Self-Etching Primer. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 274–276. [Google Scholar] [CrossRef]
- Justus, R.; Cubero, T.; Ondarza, R.; Morales, F. A New Technique With Sodium Hypochlorite to Increase Bracket Shear Bond Strength of Fluoride-Releasing Resin-Modified Glass Ionomer Cements: Comparing Shear Bond Strength of Two Adhesive Systems With Enamel Surface Deproteinization Before Etching. Semin. Orthod. 2010, 16, 66–75. [Google Scholar] [CrossRef]
- Farhadian, N.; Miresmaeili, A.; Zandi, V.S. Shear Bond Strength of Brackets Bonded with Self-Etching Primers Compared to Conventional Acid-Etch Technique: A Randomized Clinical Trial. Front. Dent. 2019, 16, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Elekdag-Turk, S.; Isci, D.; Turk, T.; Cakmak, F. Six-Month Bracket Failure Rate Evaluation of a Self-Etching Primer. Eur. J. Orthod. 2008, 30, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Aljubouri, Y.D.; Millett, D.T.; Gilmour, W.H. Six and 12 Months’ Evaluation of a Self-Etching Primer versus Two-Stage Etch and Prime for Orthodontic Bonding: A Randomized Clinical Trial. Eur. J. Orthod. 2004, 26, 565–571. [Google Scholar] [CrossRef]
- Murfitt, P.G.; Quick, A.N.; Swain, M.V.; Herbison, G.P. A Randomised Clinical Trial to Investigate Bond Failure Rates Using a Self-Etching Primer. Eur. J. Orthod. 2006, 28, 444–449. [Google Scholar] [CrossRef]
- Reis, A.; dos Santos, J.E.; Loguercio, A.D.; de Oliveira Bauer, J.R. Eighteen-Month Bracket Survival Rate: Conventional versus Self-Etch Adhesive. Eur. J. Orthod. 2008, 30, 94–99. [Google Scholar] [CrossRef]
- Dudás, C.; Czumbel, L.M.; Kiss, S.; Gede, N.; Hegyi, P.; Mártha, K.; Varga, G. Clinical Bracket Failure Rates between Different Bonding Techniques: A Systematic Review and Meta-Analysis. Eur. J. Orthod. 2023, 45, 175–185. [Google Scholar] [CrossRef]
- Sukhia, R.H.; Sukhia, H.R.; Azam, S.I.; Nuruddin, R.; Rizwan, A.; Jalal, S. Predicting the Bracket Bond Failure Rate in Orthodontic Patients: A Retrospective Cohort Study. Int. Orthod. 2019, 17, 208–215. [Google Scholar] [CrossRef]
- Jakavičė, R.; Kubiliūtė, K.; Smailienė, D. Bracket Bond Failures: Incidence and Association with Different Risk Factors-A Retrospective Study. Int. J. Environ. Res. Public. Health 2023, 20, 4452. [Google Scholar] [CrossRef]
- Khan, H.; Mheissen, S.; Iqbal, A.; Jafri, A.R.; Alam, M.K. Bracket Failure in Orthodontic Patients: The Incidence and the Influence of Different Factors. Biomed. Res. Int. 2022, 2022, 5128870. [Google Scholar] [CrossRef]
- Bahnasi, F.I.; Rahman, A.N.A.A.; Abu-Hassan, M.I. The Impact of Recycling and Repeated Recycling on Shear Bond Strength of Stainless Steel Orthodontic Brackets. Orthod. Waves 2013, 72, 16–22. [Google Scholar] [CrossRef]
- Grazioli, G.; Hardan, L.; Bourgi, R.; Nakanishi, L.; Amm, E.; Zarow, M.; Jakubowicz, N.; Proc, P.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M. Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. Materials 2021, 14, 6120. [Google Scholar] [CrossRef] [PubMed]
- Al Maaitah, E.F.; Alomari, S.; Abu Alhaija, E.S.; Saf, A.A. The Effect of Different Bracket Base Cleaning Method on Shear Bond Strength of Rebonded Brackets. J. Contemp. Dent. Pract. 2013, 14, 866–870. [Google Scholar] [CrossRef]
- D’Amario, M.; Bernardi, S.; Di Lauro, D.; Marzo, G.; Macchiarelli, G.; Capogreco, M. Debonding and Clean-Up in Orthodontics: Evaluation of Different Techniques and Micro-Morphological Aspects of the Enamel Surface. Dent. J. 2020, 8, 58. [Google Scholar] [CrossRef]
- Thawaba, A.A.; Albelasy, N.F.; Elsherbini, A.M.; Hafez, A.M. Comparison of Enamel Surface Roughness after Bracket Debonding and Adhesive Resin Removal Using Different Burs with and without the Aid of a Magnifying Loupe. J. Contemp. Dent. Pract. 2022, 23, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska-Olszowska, J.; Szatkiewicz, T.; Tomkowski, R.; Tandecka, K.; Grocholewicz, K. Effect of Orthodontic Debonding and Adhesive Removal on the Enamel—Current Knowledge and Future Perspectives—A Systematic Review. Med. Sci. Monit. 2014, 20, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Boncuk, Y.; Cehreli, Z.C.; Polat-Özsoy, Ö. Effects of Different Orthodontic Adhesives and Resin Removal Techniques on Enamel Color Alteration. Angle Orthod. 2014, 84, 634–641. [Google Scholar] [CrossRef]
- Öztürk, B.; Malkoç, S.; Koyutürk, A.E.; Çatalbaş, B.; Özer, F. Influence of Different Tooth Types on the Bond Strength of Two Orthodontic Adhesive Systems. Eur. J. Orthod. 2008, 30, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Millett, D.T.; Hallgren, A.; Cattanach, D.; McFadzean, R.; Pattison, J.; Robertson, M.; Love, J. A 5-Year Clinical Review of Bond Failure with a Light-Cured Resin Adhesive. Angle Orthod. 1998, 68, 351–356. [Google Scholar] [CrossRef]
- Littlewood, S.J.; Mitchell, L.; Greenwood, D.C. A Randomized Controlled Trial to Investigate Brackets Bonded with a Hydrophilic Primer. J. Orthod. 2001, 28, 301–305. [Google Scholar] [CrossRef]
- Mandall, N.A.; Millett, D.T.; Mattick, C.R.; Hickman, J.; Worthington, H.V.; Macfarlane, T.V. Orthodontic Adhesives: A Systematic Review. J. Orthod. 2002, 29, 205–210; discussion 195. [Google Scholar] [CrossRef]
- Labunet, A.; Tonea, A.; Kui, A.; Sava, S. The Use of Laser Energy for Etching Enamel Surfaces in Dentistry—A Scoping Review. Material 2022, 15, 1988. [Google Scholar] [CrossRef]
- Mitwally, R.A.; Bakhsh, Z.T.; Feteih, R.M.; Bakry, A.S.; Abbassy, M.A. Orthodontic Bracket Bonding Using Self-Adhesive Cement to Facilitate Bracket Debonding. J. Adhes. Dent. 2019, 21, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Odanaka, H.; Obama, T.; Sawada, N.; Sugano, M.; Itabe, H.; Yamamoto, M.; Odanaka, H.; Obama, T.; Sawada, N.; Sugano, M.; et al. Comparison of Protein Profiles of the Pellicle, Gingival Crevicular Fluid, and Saliva: Possible Origin of Pellicle Proteins. Biol. Res. 2020, 53, 3. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.; Valencia, R.; Uribe, M.; Ceja, I.; Cruz, J.; Saadia, M. Resin Replica in Enamel Deproteinization and Its Effect on Acid Etching. J. Clin. Pediatr. Dent. 2010, 35, 47–51. [Google Scholar] [CrossRef]
- Demircioglu, R.M.; Cicek, O.; Comert, F.; Erener, H. Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study. Coatings 2023, 13, 401. [Google Scholar] [CrossRef]
- Hamalaw, S.J.; Kareem, F.A.; Noori, A.J. Dispersion and Demineralization Inhibition Capacity of Novel Magnesium Oxide Nanoparticles Varnish on Enamel Surfaces against Streptococcus Mutans (an In Vitro Study). Coatings 2023, 13, 1018. [Google Scholar] [CrossRef]
- Lovius, B.B.; Pender, N.; Hewage, S.; O’Dowling, I.; Tomkins, A. A Clinical Trial of a Light Activated Bonding Material over an 18 Month Period. Br. J. Orthod. 1987, 14, 11–20. [Google Scholar] [CrossRef]
- Fowler, P.V. A Twelve-Month Clinical Trial Comparing the Bracket Failure Rates of Light-Cured Resin-Modified Glass-Ionomer Adhesive and Acid-Etch Chemical-Cured Composite. Aust. Orthod. J. 1998, 15, 186–190. [Google Scholar]
- Sunna, S.; Rock, W.P. Clinical Performance of Orthodontic Brackets and Adhesive Systems: A Randomized Clinical Trial. Br. J. Orthod. 1998, 25, 283–287. [Google Scholar] [CrossRef]
- De Saeytijd, C.; Carels, C.E.; Lesaffre, E. An Evaluation of a Light-Curing Composite for Bracket Placement. Eur. J. Orthod. 1994, 16, 541–545. [Google Scholar] [CrossRef]
- Hegarty, D.J.; Macfarlane, T.V. In Vivo Bracket Retention Comparison of a Resin-Modified Glass Ionomer Cement and a Resin-Based Bracket Adhesive System after a Year. Am. J. Orthod. Dentofac. Orthop. 2002, 121, 496–501. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.D.; Read, M.J.; Sandison, R.J.; Roberts, C.T. A Visible Light-Activated Direct-Bonding Material: An in Vivo Comparative Study. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; Strub, M.; Jeger, F.; Stadler, O.; Lussi, A. Composite Materials: Composition, Properties and Clinical Applications. A Literature Review. Schweiz. Monatsschr Zahnmed. 2010, 120, 972–986. [Google Scholar] [PubMed]
- Jurado, C.A.; Fischer, N.G.; Sayed, M.E.; Villalobos-Tinoco, J.; Tsujimoto, A. Rubber Dam Isolation for Bonding Ceramic Veneers: A Five-Year Post-Insertion Clinical Report. Cureus 2021, 13, e20748. [Google Scholar] [CrossRef]
- Beriat, N.C.; Nalbant, D. Water Absorption and HEMA Release of Resin-Modified Glass-Ionomers. Eur. J. Dent. 2009, 3, 267–272. [Google Scholar] [CrossRef][Green Version]
Variable | N | Percentage (%) |
---|---|---|
Bonding product | ||
Composite | 100 | 50.0 |
V-prep + RMGIC | 100 | 50.0 |
Jaw | ||
Upper | 100 | 50.0 |
Lower | 100 | 50.0 |
Product | Failure | p-Value | |
---|---|---|---|
Yes | No | ||
N (%) | N (%) | ||
Composite | 25 (25.0) | 75 (75.0) | 0.002 |
V-prep + RMGIC | 9 (9.0) | 91 (91.0) |
Jaw | Product | Failure | p-Value | |
---|---|---|---|---|
Yes | No | |||
N (%) | N (%) | |||
Upper | Composite | 7 (14.0) | 43 (86.0) | 0.143 |
V-prep + RMGIC | 2 (4.0) | 48 (96.0) | ||
Lower | Composite | 18 (36.0) | 32 (64.0) | 0.019 |
V-prep + RMGIC | 7 (14.0) | 43 (86.0) |
Jaw | Product | Failure by Tooth Type | p-Value | |
---|---|---|---|---|
1st Premolar | 2nd Premolar | |||
N (%) | N (%) | |||
Upper | Composite | 5 (5.0) | 2 (2.0) | 0.414 |
V-prep + RMGIC | 0 (0.0) | 2 (2.0) | 0.315 | |
Lower | Composite | 11 (11.0) | 7 (7.0) | 0.484 |
V-prep + RMGIC | 3 (3.0) | 4 (4.0) | 0.785 |
Composite | V-Prep + RMGIC | p-Value | |
Mean ± SD | Mean ± SD | ||
Mean survival time | 13.95 ± 5.88 | 16.36 ± 4.15 | 0.002 |
Mean Survival Time | Composite | V-Prep + RMGIC | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Upper jaw | 15.79 ± 5.02 | 17.31 ± 2.44 | 0.104 |
Lower jaw | 12.50 ± 6.14 | 15.52 ± 5.10 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoubril, V.; Ghoubril, J.; Abboud, M.; Bou Sakr, T.; Hardan, L.; Khoury, E. Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings 2023, 13, 1447. https://doi.org/10.3390/coatings13081447
Ghoubril V, Ghoubril J, Abboud M, Bou Sakr T, Hardan L, Khoury E. Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings. 2023; 13(8):1447. https://doi.org/10.3390/coatings13081447
Chicago/Turabian StyleGhoubril, Victor, Joseph Ghoubril, Maher Abboud, Tatiana Bou Sakr, Louis Hardan, and Elie Khoury. 2023. "Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT" Coatings 13, no. 8: 1447. https://doi.org/10.3390/coatings13081447
APA StyleGhoubril, V., Ghoubril, J., Abboud, M., Bou Sakr, T., Hardan, L., & Khoury, E. (2023). Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings, 13(8), 1447. https://doi.org/10.3390/coatings13081447