Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. Trial Design and Blinding
2.3. Sample Size Estimation
2.4. Bonding Procedure
2.5. Outcome Measures and Follow-up
2.6. Statistical Analysis
3. Results
3.1. Bracket Removal/Failure and Bonding Method
3.2. Survival Time and Bonding Method
3.3. End-of-Treatment Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- dos Santos, A.-L.-C.; Wambier, L.-M.; Wambier, D.-S.; Moreira, K.-M.-S.; Imparato, J.-C.-P.; Chibinski, A.-C.-R. Orthodontic Bracket Bonding Techniques and Adhesion Failures: A Systematic Review and Meta-Analysis. J. Clin. Exp. Dent. 2022, 14, e746–e755. [Google Scholar] [CrossRef] [PubMed]
- Pinho, M.; Manso, M.C.; Almeida, R.F.; Martin, C.; Carvalho, Ó.; Henriques, B.; Silva, F.; Pinhão Ferreira, A.; Souza, J.C.M. Bond Strength of Metallic or Ceramic Orthodontic Brackets to Enamel, Acrylic, or Porcelain Surfaces. Materials 2020, 13, e5197. [Google Scholar] [CrossRef] [PubMed]
- Zachrisson, B.J. A Posttreatment Evaluation of Direct Bonding in Orthodontics. Am. J. Orthod. 1977, 71, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Tandon, P.; Nagar, A.; Singh, G.P.; Singh, A.; Chugh, V.K. A Comparison of Shear Bond Strength of Orthodontic Brackets Bonded with Four Different Orthodontic Adhesives. J. Orthod. Sci. 2014, 3, 29–33. [Google Scholar] [CrossRef]
- Hellak, A.; Rusdea, P.; Schauseil, M.; Stein, S.; Korbmacher-Steiner, H.M. Enamel Shear Bond Strength of Two Orthodontic Self-Etching Bonding Systems Compared to TransbondTM XT. J. Orofac. Orthop. 2016, 77, 391–399. [Google Scholar] [CrossRef]
- Silva, A.L.; Terossi de Godoi, A.P.; Ferraz Facury, A.G.B.; Neves, J.G.; Correr, A.B.; Correr-Sobrinho, L.; Costa, A.R. Comparison of the Shear Bond Strength between Metal Brackets and TransbondTM XT, FiltekTM Z250 and FiltekTM Z350 before and after Gastroesophageal Reflux: An in Vitro Study. Int. Orthod. 2022, 20, 100664. [Google Scholar] [CrossRef]
- Bishara, S.E.; Oonsombat, C.; Soliman, M.M.A.; Warren, J.J.; Laffoon, J.F.; Ajlouni, R. Comparison of Bonding Time and Shear Bond Strength between a Conventional and a New Integrated Bonding System. Angle Orthod. 2005, 75, 237–242. [Google Scholar] [CrossRef]
- Akl, R.; Ghoubril, J.; Le Gall, M.; Shatila, R.; Philip-Alliez, C. Evaluation of Shear Bond Strength and Adhesive Remnant Index of Metal APCTM Flash-Free Adhesive System: A Comparative in Vitro Study with APCTM II and Uncoated Metal Brackets. Int. Orthod. 2022, 20, 100705. [Google Scholar] [CrossRef]
- Yassaei, S.; Davari, A.; Goldani Moghadam, M.; Kamaei, A. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding. J. Dent. 2014, 11, 282–289. [Google Scholar]
- Gorton, J.; Featherstone, J.D.B. In Vivo Inhibition of Demineralization around Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 10–14. [Google Scholar] [CrossRef]
- Summers, A.; Kao, E.; Gilmore, J.; Gunel, E.; Ngan, P. Comparison of Bond Strength between a Conventional Resin Adhesive and a Resin-Modified Glass Ionomer Adhesive: An in Vitro and in Vivo Study. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Prylińska-Czyżewska, A.; Maciejewska-Szaniec, Z.; Olszewska, A.; Polichnowska, M.; Grabarek, B.O.; Dudek, D.; Sobański, D.; Czajka-Jakubowska, A. Comparison of Bond Strength of Orthodontic Brackets Onto the Tooth Enamel of 120 Freshly Extracted Adult Bovine Medial Lower Incisors Using 4 Adhesives: A Resin-Modified Glass Ionomer Adhesive, a Composite Adhesive, a Liquid Composite Adhesive, and a One-Step Light-Cured Adhesive. Med. Sci. Monit. 2022, 28, e938867. [Google Scholar] [CrossRef] [PubMed]
- Feizbakhsh, M.; Aslani, F.; Gharizadeh, N.; Heidarizadeh, M. Comparison of Bracket Bond Strength to Etched and Unetched Enamel under Dry and Wet Conditions Using Fuji Ortho LC Glass-Ionomer. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Rosenbach, G.; Cal-Neto, J.P.; Oliveira, S.R.; Chevitarese, O.; Almeida, M.A. Effect of Enamel Etching on Tensile Bond Strength of Brackets Bonded in Vivo with a Resin-Reinforced Glass Ionomer Cement. Angle Orthod. 2007, 77, 113–116. [Google Scholar] [CrossRef]
- Hamdane, N.; Kmeid, R.; Khoury, E.; Ghoubril, J. Effect of Sandblasting and Enamel Deproteinization on Shear Bond Strength of Resin-Modified Glass Ionomer. Int. Orthod. 2017, 15, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Ghoubril, V.; Ghoubril, J.; Khoury, E. A Comparison between RMGIC and Composite with Acid-Etch Preparation or Hypochlorite on the Adhesion of a Premolar Metal Bracket by Testing SBS and ARI: In Vitro Study. Int. Orthod. 2020, 18, 127–136. [Google Scholar] [CrossRef]
- Ghoubril, V.; Changotade, S.; Lutomski, D.; Ghoubril, J.; Chakar, C.; Abboud, M.; Hardan, L.; Kharouf, N.; Khoury, E. Cytotoxicity of V-Prep Versus Phosphoric Acid Etchant on Oral Gingival Fibroblasts. J. Funct. Biomater. 2022, 13, 266. [Google Scholar] [CrossRef]
- Moosavi, H.; Ahrari, F.; Mohamadipour, H. The Effect of Different Surface Treatments of Demineralised Enamel on Microleakage under Metal Orthodontic Brackets. Prog. Orthod. 2013, 14, 2. [Google Scholar] [CrossRef]
- Nassif, M.S.; El-Korashy, D.I. Phosphoric Acid/Sodium Hypochlorite Mixture as Dentin Conditioner: A New Approach. J. Adhes. Dent. 2009, 11, 455–460. [Google Scholar] [CrossRef]
- Arnold, R.W.; Combe, E.C.; Warford, J.H. Bonding of Stainless Steel Brackets to Enamel with a New Self-Etching Primer. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 274–276. [Google Scholar] [CrossRef]
- Justus, R.; Cubero, T.; Ondarza, R.; Morales, F. A New Technique With Sodium Hypochlorite to Increase Bracket Shear Bond Strength of Fluoride-Releasing Resin-Modified Glass Ionomer Cements: Comparing Shear Bond Strength of Two Adhesive Systems With Enamel Surface Deproteinization Before Etching. Semin. Orthod. 2010, 16, 66–75. [Google Scholar] [CrossRef]
- Farhadian, N.; Miresmaeili, A.; Zandi, V.S. Shear Bond Strength of Brackets Bonded with Self-Etching Primers Compared to Conventional Acid-Etch Technique: A Randomized Clinical Trial. Front. Dent. 2019, 16, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Elekdag-Turk, S.; Isci, D.; Turk, T.; Cakmak, F. Six-Month Bracket Failure Rate Evaluation of a Self-Etching Primer. Eur. J. Orthod. 2008, 30, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Aljubouri, Y.D.; Millett, D.T.; Gilmour, W.H. Six and 12 Months’ Evaluation of a Self-Etching Primer versus Two-Stage Etch and Prime for Orthodontic Bonding: A Randomized Clinical Trial. Eur. J. Orthod. 2004, 26, 565–571. [Google Scholar] [CrossRef]
- Murfitt, P.G.; Quick, A.N.; Swain, M.V.; Herbison, G.P. A Randomised Clinical Trial to Investigate Bond Failure Rates Using a Self-Etching Primer. Eur. J. Orthod. 2006, 28, 444–449. [Google Scholar] [CrossRef]
- Reis, A.; dos Santos, J.E.; Loguercio, A.D.; de Oliveira Bauer, J.R. Eighteen-Month Bracket Survival Rate: Conventional versus Self-Etch Adhesive. Eur. J. Orthod. 2008, 30, 94–99. [Google Scholar] [CrossRef]
- Dudás, C.; Czumbel, L.M.; Kiss, S.; Gede, N.; Hegyi, P.; Mártha, K.; Varga, G. Clinical Bracket Failure Rates between Different Bonding Techniques: A Systematic Review and Meta-Analysis. Eur. J. Orthod. 2023, 45, 175–185. [Google Scholar] [CrossRef]
- Sukhia, R.H.; Sukhia, H.R.; Azam, S.I.; Nuruddin, R.; Rizwan, A.; Jalal, S. Predicting the Bracket Bond Failure Rate in Orthodontic Patients: A Retrospective Cohort Study. Int. Orthod. 2019, 17, 208–215. [Google Scholar] [CrossRef]
- Jakavičė, R.; Kubiliūtė, K.; Smailienė, D. Bracket Bond Failures: Incidence and Association with Different Risk Factors-A Retrospective Study. Int. J. Environ. Res. Public. Health 2023, 20, 4452. [Google Scholar] [CrossRef]
- Khan, H.; Mheissen, S.; Iqbal, A.; Jafri, A.R.; Alam, M.K. Bracket Failure in Orthodontic Patients: The Incidence and the Influence of Different Factors. Biomed. Res. Int. 2022, 2022, 5128870. [Google Scholar] [CrossRef]
- Bahnasi, F.I.; Rahman, A.N.A.A.; Abu-Hassan, M.I. The Impact of Recycling and Repeated Recycling on Shear Bond Strength of Stainless Steel Orthodontic Brackets. Orthod. Waves 2013, 72, 16–22. [Google Scholar] [CrossRef]
- Grazioli, G.; Hardan, L.; Bourgi, R.; Nakanishi, L.; Amm, E.; Zarow, M.; Jakubowicz, N.; Proc, P.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M. Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. Materials 2021, 14, 6120. [Google Scholar] [CrossRef] [PubMed]
- Al Maaitah, E.F.; Alomari, S.; Abu Alhaija, E.S.; Saf, A.A. The Effect of Different Bracket Base Cleaning Method on Shear Bond Strength of Rebonded Brackets. J. Contemp. Dent. Pract. 2013, 14, 866–870. [Google Scholar] [CrossRef]
- D’Amario, M.; Bernardi, S.; Di Lauro, D.; Marzo, G.; Macchiarelli, G.; Capogreco, M. Debonding and Clean-Up in Orthodontics: Evaluation of Different Techniques and Micro-Morphological Aspects of the Enamel Surface. Dent. J. 2020, 8, 58. [Google Scholar] [CrossRef]
- Thawaba, A.A.; Albelasy, N.F.; Elsherbini, A.M.; Hafez, A.M. Comparison of Enamel Surface Roughness after Bracket Debonding and Adhesive Resin Removal Using Different Burs with and without the Aid of a Magnifying Loupe. J. Contemp. Dent. Pract. 2022, 23, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska-Olszowska, J.; Szatkiewicz, T.; Tomkowski, R.; Tandecka, K.; Grocholewicz, K. Effect of Orthodontic Debonding and Adhesive Removal on the Enamel—Current Knowledge and Future Perspectives—A Systematic Review. Med. Sci. Monit. 2014, 20, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Boncuk, Y.; Cehreli, Z.C.; Polat-Özsoy, Ö. Effects of Different Orthodontic Adhesives and Resin Removal Techniques on Enamel Color Alteration. Angle Orthod. 2014, 84, 634–641. [Google Scholar] [CrossRef]
- Öztürk, B.; Malkoç, S.; Koyutürk, A.E.; Çatalbaş, B.; Özer, F. Influence of Different Tooth Types on the Bond Strength of Two Orthodontic Adhesive Systems. Eur. J. Orthod. 2008, 30, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Millett, D.T.; Hallgren, A.; Cattanach, D.; McFadzean, R.; Pattison, J.; Robertson, M.; Love, J. A 5-Year Clinical Review of Bond Failure with a Light-Cured Resin Adhesive. Angle Orthod. 1998, 68, 351–356. [Google Scholar] [CrossRef]
- Littlewood, S.J.; Mitchell, L.; Greenwood, D.C. A Randomized Controlled Trial to Investigate Brackets Bonded with a Hydrophilic Primer. J. Orthod. 2001, 28, 301–305. [Google Scholar] [CrossRef]
- Mandall, N.A.; Millett, D.T.; Mattick, C.R.; Hickman, J.; Worthington, H.V.; Macfarlane, T.V. Orthodontic Adhesives: A Systematic Review. J. Orthod. 2002, 29, 205–210; discussion 195. [Google Scholar] [CrossRef]
- Labunet, A.; Tonea, A.; Kui, A.; Sava, S. The Use of Laser Energy for Etching Enamel Surfaces in Dentistry—A Scoping Review. Material 2022, 15, 1988. [Google Scholar] [CrossRef]
- Mitwally, R.A.; Bakhsh, Z.T.; Feteih, R.M.; Bakry, A.S.; Abbassy, M.A. Orthodontic Bracket Bonding Using Self-Adhesive Cement to Facilitate Bracket Debonding. J. Adhes. Dent. 2019, 21, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Odanaka, H.; Obama, T.; Sawada, N.; Sugano, M.; Itabe, H.; Yamamoto, M.; Odanaka, H.; Obama, T.; Sawada, N.; Sugano, M.; et al. Comparison of Protein Profiles of the Pellicle, Gingival Crevicular Fluid, and Saliva: Possible Origin of Pellicle Proteins. Biol. Res. 2020, 53, 3. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.; Valencia, R.; Uribe, M.; Ceja, I.; Cruz, J.; Saadia, M. Resin Replica in Enamel Deproteinization and Its Effect on Acid Etching. J. Clin. Pediatr. Dent. 2010, 35, 47–51. [Google Scholar] [CrossRef]
- Demircioglu, R.M.; Cicek, O.; Comert, F.; Erener, H. Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study. Coatings 2023, 13, 401. [Google Scholar] [CrossRef]
- Hamalaw, S.J.; Kareem, F.A.; Noori, A.J. Dispersion and Demineralization Inhibition Capacity of Novel Magnesium Oxide Nanoparticles Varnish on Enamel Surfaces against Streptococcus Mutans (an In Vitro Study). Coatings 2023, 13, 1018. [Google Scholar] [CrossRef]
- Lovius, B.B.; Pender, N.; Hewage, S.; O’Dowling, I.; Tomkins, A. A Clinical Trial of a Light Activated Bonding Material over an 18 Month Period. Br. J. Orthod. 1987, 14, 11–20. [Google Scholar] [CrossRef]
- Fowler, P.V. A Twelve-Month Clinical Trial Comparing the Bracket Failure Rates of Light-Cured Resin-Modified Glass-Ionomer Adhesive and Acid-Etch Chemical-Cured Composite. Aust. Orthod. J. 1998, 15, 186–190. [Google Scholar]
- Sunna, S.; Rock, W.P. Clinical Performance of Orthodontic Brackets and Adhesive Systems: A Randomized Clinical Trial. Br. J. Orthod. 1998, 25, 283–287. [Google Scholar] [CrossRef]
- De Saeytijd, C.; Carels, C.E.; Lesaffre, E. An Evaluation of a Light-Curing Composite for Bracket Placement. Eur. J. Orthod. 1994, 16, 541–545. [Google Scholar] [CrossRef]
- Hegarty, D.J.; Macfarlane, T.V. In Vivo Bracket Retention Comparison of a Resin-Modified Glass Ionomer Cement and a Resin-Based Bracket Adhesive System after a Year. Am. J. Orthod. Dentofac. Orthop. 2002, 121, 496–501. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.D.; Read, M.J.; Sandison, R.J.; Roberts, C.T. A Visible Light-Activated Direct-Bonding Material: An in Vivo Comparative Study. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; Strub, M.; Jeger, F.; Stadler, O.; Lussi, A. Composite Materials: Composition, Properties and Clinical Applications. A Literature Review. Schweiz. Monatsschr Zahnmed. 2010, 120, 972–986. [Google Scholar] [PubMed]
- Jurado, C.A.; Fischer, N.G.; Sayed, M.E.; Villalobos-Tinoco, J.; Tsujimoto, A. Rubber Dam Isolation for Bonding Ceramic Veneers: A Five-Year Post-Insertion Clinical Report. Cureus 2021, 13, e20748. [Google Scholar] [CrossRef]
- Beriat, N.C.; Nalbant, D. Water Absorption and HEMA Release of Resin-Modified Glass-Ionomers. Eur. J. Dent. 2009, 3, 267–272. [Google Scholar] [CrossRef]
Variable | N | Percentage (%) |
---|---|---|
Bonding product | ||
Composite | 100 | 50.0 |
V-prep + RMGIC | 100 | 50.0 |
Jaw | ||
Upper | 100 | 50.0 |
Lower | 100 | 50.0 |
Product | Failure | p-Value | |
---|---|---|---|
Yes | No | ||
N (%) | N (%) | ||
Composite | 25 (25.0) | 75 (75.0) | 0.002 |
V-prep + RMGIC | 9 (9.0) | 91 (91.0) |
Jaw | Product | Failure | p-Value | |
---|---|---|---|---|
Yes | No | |||
N (%) | N (%) | |||
Upper | Composite | 7 (14.0) | 43 (86.0) | 0.143 |
V-prep + RMGIC | 2 (4.0) | 48 (96.0) | ||
Lower | Composite | 18 (36.0) | 32 (64.0) | 0.019 |
V-prep + RMGIC | 7 (14.0) | 43 (86.0) |
Jaw | Product | Failure by Tooth Type | p-Value | |
---|---|---|---|---|
1st Premolar | 2nd Premolar | |||
N (%) | N (%) | |||
Upper | Composite | 5 (5.0) | 2 (2.0) | 0.414 |
V-prep + RMGIC | 0 (0.0) | 2 (2.0) | 0.315 | |
Lower | Composite | 11 (11.0) | 7 (7.0) | 0.484 |
V-prep + RMGIC | 3 (3.0) | 4 (4.0) | 0.785 |
Composite | V-Prep + RMGIC | p-Value | |
Mean ± SD | Mean ± SD | ||
Mean survival time | 13.95 ± 5.88 | 16.36 ± 4.15 | 0.002 |
Mean Survival Time | Composite | V-Prep + RMGIC | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Upper jaw | 15.79 ± 5.02 | 17.31 ± 2.44 | 0.104 |
Lower jaw | 12.50 ± 6.14 | 15.52 ± 5.10 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoubril, V.; Ghoubril, J.; Abboud, M.; Bou Sakr, T.; Hardan, L.; Khoury, E. Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings 2023, 13, 1447. https://doi.org/10.3390/coatings13081447
Ghoubril V, Ghoubril J, Abboud M, Bou Sakr T, Hardan L, Khoury E. Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings. 2023; 13(8):1447. https://doi.org/10.3390/coatings13081447
Chicago/Turabian StyleGhoubril, Victor, Joseph Ghoubril, Maher Abboud, Tatiana Bou Sakr, Louis Hardan, and Elie Khoury. 2023. "Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT" Coatings 13, no. 8: 1447. https://doi.org/10.3390/coatings13081447
APA StyleGhoubril, V., Ghoubril, J., Abboud, M., Bou Sakr, T., Hardan, L., & Khoury, E. (2023). Eighteen-Month Orthodontic Bracket Survival Rate with the Conventional Bonding Technique versus RMGIC and V-Prep: A Split-Mouth RCT. Coatings, 13(8), 1447. https://doi.org/10.3390/coatings13081447