Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview
Abstract
:1. Introduction
2. Anti-Slip and Highly Wear-Resistant Elastic Coating
2.1. Anti-Slip Mechanism of Coating
2.2. Wear-Resistant Mechanism of Coating
3. Research Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings
3.1. Metal-Based Anti-Slip and Wear-Resistant Coating
3.2. Polymer-Based Anti-Slip and Wear-Resistant Coating
3.2.1. Epoxy Anti-Slip and Wear-Resistant Coating
3.2.2. Polyurethane Anti-Slip and Wear-Resistant Coating
3.2.3. Other Types of Anti-Slip and Wear-Resistant Coatings
4. Summary and Prospects of Anti-Slip and High Wear-Resistant Coatings
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Luca, M.; Dell’Acqua, G. Runway surface friction characteristics assessment for Lamezia Terme airfield pavement management system. J. Air Transp. Manag. 2014, 34, 1–5. [Google Scholar] [CrossRef]
- Dong, X.; Xia, M.; Wang, F.; Yang, H.; Ji, G.; Nyberg, E.; Ji, S. A super wear-resistant coating for Mg alloys achieved by plasma electrolytic oxidation and discontinuous deposition. J. Magnes. Alloy. 2023, 11, 2939–2952. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Zheng, K.; Zhi, J.; Zhou, B.; Wu, Y.; Xue, Y.; Ma, Y.; Cheng, F.; Gao, J.; et al. Achieving CVD diamond films on Mo0.5(TiZrTaW)0.5 highly concentrated alloy for ultrastrong corrosion resistance. Surf. Coat. Technol. 2023, 466, 129620. [Google Scholar] [CrossRef]
- Hu, S.X.; Qin, R.R.; Chi, J.Y.; Cao, X.Y.; Yang, Z.K.; Qu, X.Y.; Wu, H.; Zhang, Y. Research Progress in Non-skid Coatings for Flight Decks. Silicone Mater. 2019, 33, 418–423. [Google Scholar]
- Yang, C.; Yin, C.; Wu, Y.; Zhou, Q.; Liu, X. Atomic insights into the deformation mechanism of an amorphous wrapped nanolamellar heterostructure and its effect on self-lubrication. J. Mater. Res. Technol. 2023, 26, 4206–4218. [Google Scholar] [CrossRef]
- Picas, J.; Menargues, S.; Martin, E.; Baile, M. Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings. Surf. Coat. Technol. 2023, 456, 129243. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.H.; Yuan, P.Y.; Yin, X.T.; Feng, L.M. Progress in Research and Application of Marine Anti-Skid Coatings. Mater. Prot. 2019, 52, 111–115. [Google Scholar]
- Li, K.; Liang, J.; Zhou, J. Effects of WS2 and Cr3C2 addition on microstructural evolution and tribological properties of the self-lubricating wear-resistant CoCrFeNiMo composite coatings prepared by laser cladding. Opt. Laser Technol. 2023, 163, 109442. [Google Scholar] [CrossRef]
- Wu, J.L.; Liu, J.L.; Li, P.; Jia, Y.Z.; Liu, P.C. Research progress of epoxy floor coatings. China Build. Mater. Sci. Technol. 2019, 28, 28–30. [Google Scholar]
- Korneev, K.; Sytchenko, A.; Moskovskikh, D.; Kuskov, K.; Volkova, L.; Poliakov, M.; Pogozhev, Y.; Yudin, S.; Yakushko, E.; Nepapushev, A. Hard Wear-Resistant Ti-Si-C Coatings for Cu-Cr Electrical Contacts. Materials 2023, 16, 936. [Google Scholar] [CrossRef]
- Yongqiang, Z. Intermittent Colored Non-Slip Surface Material and Structural Integrated Design and Experimental Research. In Proceedings of the 2015 International Conference on Architectural, Civil and Hydraulics Engineering, Guangzhou, China, 28–29 November 2015; pp. 33–36. [Google Scholar]
- Aliabadi, M.; Khodabakhshi, F.; Soltani, R.; Gerlich, A. Modification of flame-sprayed NiCrBSi alloy wear-resistant coating by friction stir processing and furnace re-melting treatments. Surf. Coat. Technol. 2023, 455, 129236. [Google Scholar] [CrossRef]
- Lin, S.L.; Cai, H.H. Preparation of New Anti-Slip Flooring Coatings: Hydrophobic MMA Floor Coatings. Adv. Mat. Res. 2013, 721, 73–76. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Zong, Y.; Zhang, L.; Liu, Y.; Yan, L.; Jiao, K. Optimization Study of Annular Wear-Resistant Layer Structure for Blast Furnace Tuyere. Metals 2023, 13, 1109. [Google Scholar] [CrossRef]
- Gupta, S.; Sidhu, S.S.; Chatterjee, S.; Malviya, A.; Singh, G.; Chanda, A. Effect of Floor Coatings on Slip-Resistance of Safety Shoes. Coatings 2022, 12, 1455. [Google Scholar] [CrossRef]
- Metel, A.; Volosova, M.; Melnik, Y.; Mustafaev, E.; Grigoriev, S. Removal of Wear-Resistant Coatings from Cutting Tools by Fast Argon Atoms. Coatings 2023, 13, 999. [Google Scholar] [CrossRef]
- Yu, R.; Lu, L.X.; Qiu, X.L. Preparation and Performance Evaluation of Coated Anti-skid Paper Based on Nano-CaCO3. Packag. Eng. 2017, 38, 25–28. [Google Scholar]
- Bian, Y.; Cao, L.; Zeng, D.; Cui, J.; Li, W.; Yu, Z.; Zhang, P. The tribological properties of two-phase hard and soft composite wear-resistant coatings on titanium alloys. Surf. Coat. Technol. 2023, 456, 129256. [Google Scholar] [CrossRef]
- Yu, R. Preparation and Properties of Non-Slip Paper Based on Nano-CaCO3/SiO2 with Waterborne Polyurethane. Master’s Thesis, University of the South, Wuxi, China, 2018. [Google Scholar]
- Zhu, X.; Ma, G.; Ding, Z.; Mu, H.; Piao, Z.; Liu, M.; Guo, W.; Xing, Z.; Wang, H. Tribological properties of the WC-10Co-4Cr-4CaF2 wear-resistant self-lubricating coating at different temperatures. Surf. Coat. Technol. 2023, 475, 130129. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Liu, C.; Chen, Z. Research on skid resistance of asphalt pavement based on three-dimensional laser-scanning technology and pressure-sensitive film. Constr. Build. Mater. 2014, 69, 49–59. [Google Scholar] [CrossRef]
- Ren, Z.; Hu, Y.; Tong, Y.; Cai, Z.; Liu, J.; Wang, H.; Liao, J.; Xu, S.; Li, L. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy. Tribol. Int. 2023, 182, 108366. [Google Scholar] [CrossRef]
- Hadiwardoyo, S.P.; Sinaga, E.S.; Fikri, H. The influence of Buton asphalt additive on skid resistance based on penetration index and temperature. Constr. Build. Mater. 2013, 42, 5–10. [Google Scholar] [CrossRef]
- Zhong, X.P. Status and development trends of specialty coatings in China. Mod. Chem. Ind. 2019, 39, 7–10. [Google Scholar]
- Zhu, W.Z. Friction and Anti-Slip Coatings. Paint. Coat. Ind. 2002, 8, 34–37. [Google Scholar]
- Hejazi, V.; Nosonovsky, M. Wear-Resistant and Oleophobic Biomimetic Composite Materials. In Green Tribology: Biomimetics, Energy Conservation and Sustainability; Nosonovsky, M., Bhushan, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 149–172. [Google Scholar]
- Zhang, J. Preparation and Characterization of Skid-Resistant Organosilicon Coating. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Burris, D.L.; Zhao, S.; Duncan, R.; Lowitz, J.; Perry, S.S.; Schadler, L.S.; Sawyer, W.G. A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 2009, 267, 653–660. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, L.; Zhou, R.; Fan, X.; Kang, G.; Liu, Y.; Zhou, K. Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications. Adv. Sci. 2021, 8, 2003739. [Google Scholar] [CrossRef] [PubMed]
- Aleshin, V.; Van Den Abeele, K.; Bou Matar, O. General solutions to the mechanical contact problem. Proc. Meet. Acoust. 2012, 16, 045012. [Google Scholar]
- Borrero-López, O.; Pajares, A.; Constantino, P.J.; Lawn, B.R. A model for predicting wear rates in tooth enamel. J. Mech. Behav. Biomed. Mater. 2014, 37, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, L.; Nepomnyashchy, O.; Lapsker, I.; Verdyan, A.; Moshkovich, A.; Feldman, Y.; Tenne, R. Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear 2005, 259, 703–707. [Google Scholar] [CrossRef]
- Fleming, J.R.; Suh, N.P. Mechanics of crack propagation in delamination wear. Wear 1977, 44, 39–56. [Google Scholar] [CrossRef]
- Su, S.H. Study on Preparation of New Wear Resistant Self-Lubricating Coatings. Master’s Thesis, Shenyang Ligong University, Shenyang, China, 2023. [Google Scholar]
- Xiao, L.; Yan, D.M.; Xu, W.C. Application of Nanotechnology in Wear-resistant Coatings. Mod. Paint. Finish 2017, 20, 31–34. [Google Scholar]
- Gun, Q. Study on Preparation of Nano-Alumina Transparent and Abrasion-Resistant Coatings. Master’s Thesis, Nanjing University of Technology, Nanjing, China, 2005. [Google Scholar]
- Xing, S.; Zhu, W.; You, S.; Yu, W.; Jiang, C.; Ji, V. Investigation on microstructure and tribological performances of electrodeposited Ni-W-Y2O3 composite coatings. J. Alloys Compd. 2023, 965, 171397. [Google Scholar] [CrossRef]
- Liu, C. Research of the Anti-Skid and Heat Resistant Coatings Reinforced by Alumoxane. Master’s Thesis, National University of Defense Technology, Changsha, China, 2018. [Google Scholar]
- Deng, Q.; Wang, T.L.; Bai, Y.; Jiang, X.J. Preparation of highly wear-resistant non-skid deck coating and analysis of its non-skid wear resistance. Chinese. J. Ship Res. 2020, 15, 82–88. [Google Scholar]
- Zheng, M.; Han, L.; Wang, F.; Mi, H.; Li, Y.; He, L. Comparison and analysis on heat reflective coating for asphalt pavement based on cooling effect and anti-skid performance. Constr. Build Mater. 2015, 93, 1197–1205. [Google Scholar] [CrossRef]
- Fan, J.; Jiang, Y.; Yi, Y.; Tian, T.; Yuan, K.; Xue, J. Effects of load and environment on the durability and anti-skid performance of road heat-reflective coating. Constr. Build Mater. 2022, 346, 128520. [Google Scholar] [CrossRef]
- Liu, C.M. Research of the Polyurethane Anti-Skid Deck Coatings Reinforced by SiC Fibers. Master’s Thesis, National University of Defense Technology, Changsha, China, 2017. [Google Scholar]
- Liu, J.R.; Zhang, Y.; He, Z.L.; Yang, Y. Development and Application of Antistatic Wear-resistant Polyurethane Floor Coatings. China Coat. 2022, 37, 42–46. [Google Scholar]
- Ramachandran, S.; Tao, L.; Lee, T.H.; Sant, S.; Overzet, L.J.; Goeckner, M.J.; Kim, M.J.; Lee, G.S.; Hu, W. Deposition and patterning of diamondlike carbon as antiwear nanoimprint templates. J. Vac. Sci. Technol. B 2006, 24, 2993–2997. [Google Scholar] [CrossRef]
- De, Q.; Xu, J.W.; Gao, X.H.; Wu, Y.L. Technology and Developing Tendency of Warship Deck Paints. Chin. J. Ship Res. 2013, 8, 111–116. [Google Scholar]
- Su, J.; Lu, P.; Wang, Z. Properties of Ni-Al anti-skid coatings. Trans. China Weld. Inst. 2013, 34, 65–68. [Google Scholar]
- Rapouch, J. Degradation of Cr3C2-NiCr coating prepared by the HVOF technique. Koroze Ochr. Mater. 2013, 57, 82–86. [Google Scholar]
- Lekatou, A.; Zois, D.; Karantzalis, A.E.; Grimanelis, D. Electrochemical behaviour of cermet coatings with a bond coat on Al7075: Pseudopassivity, localized corrosion and galvanic effect considerations in a saline environment. Corros. Sci. 2010, 52, 2616–2635. [Google Scholar] [CrossRef]
- Sarcar, M.M.M.; Suman, K.N.S.; Kamaluddin, S. Tribological and Corrosion behavior of HVOF Sprayed WC-Co, NiCrBSi and Cr3C2-NiCr Coatings and analysis using Design of Experiments. Mater. Today Proc. 2015, 2, 2654–2665. [Google Scholar]
- El Rayes, M.M.; Abdo, H.S.; Khalil, K.A. Erosion-Corrosion of Cermet Coating. Int. J. Electrochem. Sci. 2013, 8, 1117–1137. [Google Scholar] [CrossRef]
- Toma, D.; Brandl, W.; Marginean, G. Wear and corrosion behaviour of thermally sprayed cermet coatings. Surf. Coat. Technol. 2001, 138, 149–158. [Google Scholar] [CrossRef]
- Wang, L.L.; Liang, X.B.; Chen, Y.X.; Guo, W.; Ding, H.D. Properties of Fe-based Amorphous and Nanocrystalline Coating on Magnesium Alloy Prepared by Arc Spraying. J. Armed. Forces 2011, 25, 83–87. [Google Scholar]
- Nurminen, J.; Näkki, J.; Vuoristo, P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. J. Refract. Hard. Met. 2009, 27, 472–478. [Google Scholar] [CrossRef]
- Kwon, H.; Park, Y.; Nam, U.H.; Lee, E.; Byon, E. Comparative Research on Corrosion Resistant Non-Skid Al and Al-3%Ti Coating Fabricated by Twin Wire arc Spraying. Korean J. Met. Mater. 2023, 61, 242–251. [Google Scholar] [CrossRef]
- Kwon, H.; Park, Y.; Nam, U.H.; Byon, E. Research on Thermal Properties and High Temperature Exposure Behavior of Non-Skid Coating Fabricated by Twin Wire Arc Spraying. Korean J. Met. Mater. 2023, 61, 642–651. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Yuan, J.; Li, H. Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-Corrosion and Wear Performances. J. Therm. Spray Technol. 2014, 23, 676–683. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X.; Xing, L.; Wang, Z.; Li, Y. A novel non-skid composite coating with higher corrosion resistance. Ceram. Int. 2017, 43, 15095–15106. [Google Scholar] [CrossRef]
- Lekatou, A.; Regoutas, E.; Karantzalis, A.E. Corrosion behaviour of cermet-based coatings with a bond coat in 0.5M H2SO4. Corros. Sci. 2008, 50, 3389–3400. [Google Scholar] [CrossRef]
- Reddy, K.R.R.M.; Ramanaiah, N.; Sarcar, M. Effect of heat treatment on corrosion behavior of duplex coatings. J. King Saud Univ. Eng. Sci. 2017, 29, 84–90. [Google Scholar]
- Dent, A.H.; Horlock, A.J.; McCartney, D.G.; Harris, S.J. Microstructural characterisation of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying. Surf. Coat. Technol. 2001, 139, 244–250. [Google Scholar] [CrossRef]
- Legg, K.O.; Graham, M.; Chang, P.; Rastagar, F.; Gonzales, A.; Sartwell, B. The replacement of electroplating. Surf. Coat. Technol. 1996, 81, 99–105. [Google Scholar] [CrossRef]
- Tian, X.D.; Wang, L.J.; Sun, B. Structure and Properties of Mo Wear Resistant Coating Prepared on TC4 through Glow Plasma Deposition. Adv. Mat. Res. 2013, 668, 799–803. [Google Scholar] [CrossRef]
- MIL-D-23003; Deck Covering Compound, Nonslip, Rollable. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC): Washington, DC, USA, 1980.
- MIL-PRF-24667C; Performance Specification, Coating System, Non-Skid, for Roll, Spray, or Self-Adhering Applicati. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC): Washington, DC, USA, 2008.
- Olmos, D.; González-Benito, J.; Aznar, A.J.; Baselga, J. Hydrolytic damage study of the silane coupling region in coated silica microfibres: pH and coating type effects. J. Mater. Process. Technol. 2003, 143–144, 82–86. [Google Scholar] [CrossRef]
- Robert, F.; Brady, J. Tougher deck coating made for navy carriers. Chem. Eng. News Arch. 1983, 61, 22. [Google Scholar]
- Sulitt, R.A.; Callt, E.; Hubertt, D. Arc sprayed aluminium composite non-skid coating for airfield landing mats. Surf. Eng. 1994, 10, 36–40. [Google Scholar] [CrossRef]
- Berendsen, A.M. Ship Painting: Current Practice and Systems in Europe; Technology Publishing Company: Beijing China, 2002. [Google Scholar]
- Sun, Z.X.; Guo, Z.L.; Chen, K.F. Newly Research Progress in the Antiskid Coatings for Flight Deck. Shanghai Coat. 2011, 49, 28–30. [Google Scholar]
- Fritz, J.F.; Christy, R.V.; James, T.G. High Friction Coating Formulations and Systems and Coated Articles Thereof Exhibiting Radar Signature Reduction and Methods of Providing the Same. US20090226673A1, 10 September 2009. [Google Scholar]
- MIL-PRF-24667B; Coating System, Non-Skid, For Roll Or Spray Application. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC): Washington, DC, USA, 2021.
- Li, S.Y.; Xu, J. The application of the ZYY antiskid composite material on pedestrian overpass. China Build. Mater. Sci. Technol. 2010, 19, 39–42. [Google Scholar]
- Du, S.J.; Du, L.L. Color Antiskid Coating--Traffic Safety Facilities with Good Effect. China Coat. 2012, 27, 23–25. [Google Scholar]
- Mao, C.F. The Epoxy Coating Modified by Polysulfide. Shanghai Coat. 2000, 3, 11–13. [Google Scholar]
- Lin, X.B. A Kind of Wear-Resistant Anti-Slip Coating. CN105623457A, 1 June 2016. [Google Scholar]
- Cai, X.; Huang, W.; Liang, J.; Wu, K. Study of Pavement Performance of Thin-Coat Waterborne Epoxy Emulsified Asphalt Mixture. Front. Mater. 2020, 7, 88. [Google Scholar] [CrossRef]
- Kwei, T.K. Phase separation in segmented polyurethanes. J. Appl. Polym. Sci. 1982, 27, 2891–2899. [Google Scholar] [CrossRef]
- Xiao, S.; Laux, K.A.; Wang, H.; Hu, F.; Sue, H.J. Physical correlation between abrasive wear performance and scratch resistance in model polyurethane elastomers. Wear 2019, 418–419, 281–289. [Google Scholar] [CrossRef]
- Bayer, O. Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew. Chem. Int. Ed. 1947, 59, 257–272. [Google Scholar] [CrossRef]
- Čížek, A.W., Jr.; Lerner, I.; Simeon, R. Aircraft Carrier Deck Coating; Department of the Navy: Washington, DC, USA, 1972. [Google Scholar]
- Cambon, C. Multi-Coat Nonskid Surfacing. US 4859522, 22 August 1989. [Google Scholar]
- Strait, J.S.; Lindell, M.A.; Johnson, R.N. Non-Skid, Radar Absorbing System, Its Method of Making, and Method of Use. US6518911, 2 November 2003. [Google Scholar]
- Zhu, H.H.; Li, Z.C.; Yuan, H.H.; Yang, Q.; Chen, J.; Cao, Y. A Kind of Deck Anti-Skid Coating and Its Preparation Method. CN115960505A, 4 April 2023. [Google Scholar]
- Zhang, H.; Zhang, H.; Tang, L.; Zhang, Z.; Gu, L.; Xu, Y.; Eger, C. Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles. Tribol. Int. 2010, 43, 83–91. [Google Scholar] [CrossRef]
- Chen, C.Z.; Leng, X.F.; Jiang, X.J.; Zuo, J.J.; Bai, Y. Preparation and Performance of Lightweight Wear-resistant Non-skid Coatings. Paint Coat Ind. 2022, 52, 48–53. [Google Scholar]
- Wu, F.; Ding, H.Y. Research Progress of Ship Special Coating Material Technology. In Proceedings of the National Academic Exchange Conference on New Materials and Technologies for Water Conservancy Engineering and Marine Engineering, Nanjing, China, 18 November 2006. [Google Scholar]
- Xie, Q.H.; Luo, Y.L.; Chen, X.T.; Guo, J.H. Research Progress of Colored Pavement Anti-Skid Coating. Guangdong Chem. Ind. 2014, 41, 91–92. [Google Scholar]
- Sun, Z.X.; Zhang, D.Y.; Chen, K.F.; Lai, G.W.; Zhang, G.T. A Deck Paint without Skid-resistant Granula. Shanghai Coat. 2006, 8, 1–4. [Google Scholar]
- Peng, C.; Hu, Y.; You, Z.; Jin, D.; Xu, X.; Guo, C.; Liu, Y.; Wu, T.; Liu, H.; Yang, H.; et al. Anti-Icing Properties of a Polyurethane Superhydrophobic Coating on Asphalt Pavement. J. Mater. Civ. Eng. 2023, 35, 04023255. [Google Scholar] [CrossRef]
- Cash, C.G.; Brower, J.R.; Bessmer, S.J. Siloxane-Based, Non-Skid Coating Composition. US3350330, 31 October 1967. [Google Scholar]
- Yoshioka, H.; Ono, I.; Sugahara, H. Coating Compositions. US4774278, 27 September 1988. [Google Scholar]
- Li, L.H.; Chen, C.Y.; Wang, F. Study on the Interfacial Strength of the System of Anti-skid Surface with Coating. J. Build. Eng. 2010, 5, 759–763. [Google Scholar] [CrossRef]
- Chen, W.Y.; Li, L.H.; Li, M. Analysis of Component Materials to Performance of Anti-skid Surface Dressing System. Highw. Eng. 2009, 34, 125–129. [Google Scholar]
- Zhang, J.; Weng, X.Z.; Liu, J.Z.; Yang, B.H.; Wen, X.P.; Wang, T. Anti-slip and wear resistance performance of three novel coatings as surface course of airstrip. Int. J. Pavement Eng. 2018, 19, 370–378. [Google Scholar] [CrossRef]
- Han, S.; Yao, T.; Yang, X. Preparation and anti-icing properties of a hydrophobic emulsified asphalt coating. Constr. Build Mater. 2019, 220, 214–227. [Google Scholar] [CrossRef]
- Zhou, C.; Ren, Z.; Lin, Y.; Huang, Z.; Shi, L.; Yang, Y.; Mo, J. Hysteresis dynamic model of metal rubber based on higher-order nonlinear friction (HNF). Mech. Syst. Signal Process. 2023, 189, 110117. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Zhu, Y.; Xiang, H.; Lu, G. Research on Characteristics of Macrotexture for Colored Anti-Skid Coating on Pavement Based on Fractal Theory. Transp. Res. Rec. 2022, 2676, 129–140. [Google Scholar] [CrossRef]
- Peng, C.; Yang, H.; Yuan, X.; You, Z.; Xu, F.; Lu, L.; Ma, H.; Hu, Y.; Liu, Y.; Wu, T. Investigation of the Antifreezing, Skid Resistance, and Waterproof Performances of an Acrylic and Polytetrafluoroethylene Coating for Asphalt Pavement. J. Mater. Civ. Eng. 2023, 35, 04022454. [Google Scholar] [CrossRef]
- Gao, S.; Li, H.; Huang, H.; Kang, R. Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Appl. Surf. Sci. 2022, 599, 153982. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C.; Loizos, A. How Can Sustainable Materials in Road Construction Contribute to Vehicles’ Braking? Vehicles 2020, 2, 55–74. [Google Scholar] [CrossRef]
- Pomoni, M.; Plati, C. Skid Resistance Performance of Asphalt Mixtures Containing Recycled Pavement Materials under Simulated Weather Conditions. Recycling 2022, 7, 47. [Google Scholar] [CrossRef]
Type of Coating | Substrate | The Composition of a Coating | Anti-Slip Property (Friction Coefficient) | Wear Resistance [×103 kg mm−1] | Intended Applications | Ref. |
---|---|---|---|---|---|---|
Metal-based | Metals, ceramics, polymers. | Alloy, amorphous, and metal matrix composite coatings layer. | ≥0.6 | 0.4~4 | Industrial production, offshore platforms, and ship decks, etc. | [4,7,18,20,29,37] |
Epoxy-based | Previously painted surfaces, timber, natural and engineered stone materials. | Two-component anti-slip coating with epoxy resin as the main component. | ≥0.65 | 0.5~2.5 | Ordinary cars and passenger walkways, helicopter flight decks, ramps, etc. | [4,7,19,27,29,38,39,40,41] |
Polyurethane-based | Concrete, steel, timber, stone surfaces, fiberglass. | Two-component coating with polyurethane resin as the main component. | ≥0.65 | 0.5~1.5 | Walkways for regular cars, machinery loading and unloading areas, etc. | [4,7,19,29,42,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, J.; Qi, X.; Tian, P.; Feng, Z.; Qin, W.; Wu, D.; Liu, L.; Wang, Y. Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview. Coatings 2024, 14, 47. https://doi.org/10.3390/coatings14010047
Chen W, Zhang J, Qi X, Tian P, Feng Z, Qin W, Wu D, Liu L, Wang Y. Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview. Coatings. 2024; 14(1):47. https://doi.org/10.3390/coatings14010047
Chicago/Turabian StyleChen, Wenrui, Jingying Zhang, Xinyu Qi, Pan Tian, Zenghui Feng, Weihua Qin, Dongheng Wu, Lanxuan Liu, and Yang Wang. 2024. "Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview" Coatings 14, no. 1: 47. https://doi.org/10.3390/coatings14010047
APA StyleChen, W., Zhang, J., Qi, X., Tian, P., Feng, Z., Qin, W., Wu, D., Liu, L., & Wang, Y. (2024). Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview. Coatings, 14(1), 47. https://doi.org/10.3390/coatings14010047