Modification of Cu-Based Current Collectors and Their Application in High-Performance Zn Metal Anode: A Review
Abstract
:1. Introduction
2. Chemical Modification of Cu-Based CCs
2.1. Protective-Layer Modification
2.1.1. Metal/Alloy Protective Layers
2.1.2. Inorganic Protective Layers
2.1.3. Organic Protective Layers
2.2. Alloying-Method Modification
2.3. Summary
3. Structural Modification of Cu-Based CCs
Current Collectors | Modification Methods | Voltage Hysteresis V a (V) (C1 c (mA cm−2)) | Lifespan T b h [C1 c (mA cm−2), C2 c (mAh cm−2)] | Ref. |
---|---|---|---|---|
Modification strategy: Chemical modification | ||||
SCF | Metal/alloy protective layers | ~0.04 (1) | 270 (1, 0.5) | [75] |
NSH | Metal/alloy protective layers | 0.0395 (2) | 300 (1, 1) | [76] |
Sn@Cu foam | Metal/alloy protective layers | 0.025 (1) | 1800 (1, 1) | [77] |
Cu-Zn@Cu mesh | Metal/alloy protective layers | 0.0931 (2) | 280 (2, 4) | [78] |
Cu-Ag | Metal/alloy protective layers | / | 400 (0.5, 0.125) | [103] |
Zn-Cu@Cu foil | Metal/alloy protective layers | ~0.0625 (0.5) | 400 (0.5 0.25) | [104] |
R-CF@Sn | Metal/alloy protective layers | 0.105 (5) | 700 (5, 1) | [105] |
Bio-scaffold | Inorganic protective layer | 0.026 (1) | 800 (1, 1) | [79] |
CF-Cu | Inorganic protective layer | 0.0146 (0.5) | 2200 (0.5, 0.25) | [80] |
Cu NBs@NCFs | Inorganic protective layer | 0.0346 (2) | 450 (2, 1) | [81] |
NOCA@CF | Inorganic protective layer | 0.045 (1) | 240 (1, 0.5) | [82] |
(C2F4)n-C@Cu | Inorganic protective layer | 0.0309 (1) | 1200 (1, 1) | [84] |
3DP-Cu@Gr | Inorganic protective layer | 0.083 (5) | 300 (10, 2) | [106] |
BN-ZnCu | Inorganic protective layer | 0.041 (2) | 800 (1, 1) | [107] |
Cu5Zn8@NC NRAs | Inorganic protective layer | 0.0186 (1) | 7000 (1, 1) | [108] |
PBI-Cu | Organic protective layer | 0.035 (10) | 300 (10, 1) | [87] |
PAN-Cu | Organic protective layer | ~0.035 (2) | ~270 (2, 1) | [88] |
SA-Cu@Zn | Organic protective layer | 0.026 (1) | 2000 (1, 1) | [109] |
TNGs | Organic protective layer | 0.0335 (5) | 2800 (2, 1) | [110] |
Cu@Zn@CMC-ZnF2 | Organic protective layer | / | 210 (10, 5) | [111] |
3D NP Zn-Cu | Alloying method | ~0.02 (2) | 300 (2, /) | [90] |
Cu/Al2Cu | Alloying method | 0.020 (0.5) | 4000 (0.5, 0.5) | [112] |
Sb/Sb2Zn3-HI@Cu | Alloying method | 0.020 (5) | 700 (5, 5) | [113] |
Modification strategy: Structural modification | ||||
Cu NW@Cu foam | Reduction method | ~0.0339 (1) | 3000 (1, 1) | [67] |
Cu (220) | Other methods | 0.03 (5) | ~360 (/, 4) | [95] |
Cu (111) | Other methods | 0.1467 (20) | 400 (10, 4) | [100] |
Cu (100) or Cu (110) | Other methods | ~0.025 (2) | 1000 (2, 1) | [101] |
3D porous copper foam | Other methods | 0.178 (5) | 200 (5, 1) | [102] |
4. Conclusions and Outlook
- Mechanism exploration
- 2.
- New Composites
- 3.
- Novel synthesis process
- 4.
- Large-scale practical applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.-L.; Liu, X.; Luo, Y.; Zhou, L.; Kim, J.-K. Nanosilicon anodes for high performance rechargeable batteries. Prog. Mater. Sci. 2017, 90, 1–44. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Luo, R.; Liu, X.; Huo, K.; Kim, J.-K.; He, J.; Luo, Y. In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium–Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1804520. [Google Scholar] [CrossRef]
- Li, H.; Jia, W.; Chen, P.; Wang, L.; Yan, X.; Yang, Y.-Y. Zinc deposition characteristics on different substrates for aqueous zinc ion battery. Appl. Surf. Sci. 2023, 607, 155111. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.G.; Zhang, J.L.; Kintner-Meyer, M.C.W.; Lu, X.C.; Choi, D.W.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Yan, N.; Cui, H.; Shi, J.; You, S.; Liu, S. Recent progress of W18O49 nanowires for energy conversion and storage. Tungsten 2023, 5, 371–390. [Google Scholar] [CrossRef]
- Lin, J.; Yan, Y.; Qi, J.; Zha, C. Atomic tailoring-induced deficiency in tungsten oxides for high-performance energy-related devices. Tungsten 2024, 6, 269–277. [Google Scholar] [CrossRef]
- Scholes, G.D.; Fleming, G.R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763–774. [Google Scholar] [CrossRef]
- Yi, Z.H.; Chen, G.Y.; Hou, F.; Wang, L.Q.; Liang, J. Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries. Adv. Energy Mater. 2021, 11, 2003065. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Zhang, T.-T.; Lu, H.; Masese, T.; Yamamoto, K.; Liu, R.-Q.; Lin, X.-J.; Feng, X.-M.; Liu, X.-M.; Wang, D.; et al. Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Mater. 2018, 13, 329–339. [Google Scholar] [CrossRef]
- Wang, H.; Wang, F.; Liu, Y.; Liu, Z.; Miao, Y.; Zhang, W.; Wang, G.; Ji, J.; Zhang, Q. Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chin. Chem. Lett. 2024, 109589, in press. [Google Scholar] [CrossRef]
- Wang, S.; Tang, C.; Huang, Y.; Gong, J. Remarkable-cycle-performance β-bismuthene/graphene heterostructure anode for Li-ion battery. Chin. Chem. Lett. 2022, 33, 3802–3808. [Google Scholar] [CrossRef]
- Abdollahi, S.; Madadi, M.; Ghorbanzadeh, S.; Ostad-Ali-Askari, K.; Singh, V.P.; Eslamian, S. Study of Energy Types: Fossil, Nuclear and Renewable Energies and their Evaluation in Terms of Environmental Pollution and Economically. Am. J. Eng. Appl. Sci. 2019, 12, 342–351. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Gao, Y.M.; Liu, Y.; Feng, K.J.; Ma, J.Q.; Miao, Y.J.; Xu, B.R.; Pan, K.M.; Akiyoshi, O.; Wang, G.X.; Zhang, K.K.; et al. Emerging WS2/WSe2@graphene nanocomposites: Synthesis and electrochemical energy storage applications. Rare Met. 2024, 43, 1–19. [Google Scholar] [CrossRef]
- Qian, H.; Liu, Y.; Chen, H.X.; Feng, K.J.; Jia, K.X.; Pan, K.M.; Wang, G.X.; Huang, T.; Pang, X.C.; Zhang, Q.B. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications. Energy Storage Mater. 2023, 58, 232–270. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Liu, Z.; Ha, S.; Liu, Y.; Wang, F.; Tao, F.; Xu, B.; Yu, R.; Wang, G.; Ren, F.; Li, H. Application of Ag-based materials in high-performance lithium metal anode: A review. J. Mater. Sci. Technol. 2023, 133, 165–182. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Alvarez, G.E.; Marcovecchio, M.G.; Aguirre, P.A. Optimization of the integration among traditional fossil fuels, clean energies, renewable sources, and energy storages: An MILP model for the coupled electric power, hydraulic, and natural gas systems. Comput. Ind. Eng. 2020, 139, 106141. [Google Scholar] [CrossRef]
- Wang, H.X.; Tran, D.; Qian, J.; Ding, F.Y.; Losic, D. MoS2/Graphene Composites as Promising Materials for Energy Storage and Conversion Applications. Adv. Mater. Interfaces 2019, 6, 1900915. [Google Scholar] [CrossRef]
- Wei, X.J.; Li, Y.H.; Peng, H.R.; Gao, D.; Ou, Y.Q.; Yang, Y.B.; Hu, J.R.; Zhang, Y.H.; Xiao, P. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem. Eng. J. 2019, 355, 336–340. [Google Scholar] [CrossRef]
- Li, L.; Jia, S.F.; Cao, M.H.; Ji, Y.Q.; Qiu, H.W.; Zhang, D. Progress in research on metal-based materials in stabilized Zn anodes. Rare Met. 2024, 43, 20–40. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, C.; Ou, T.; Zhang, S.R.; Li, L.; Ji, X.H. Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review. Energy Rep. 2022, 8, 4525–4534. [Google Scholar] [CrossRef]
- Miao, Y.; Zheng, Y.; Tao, F.; Chen, Z.; Xiong, Y.; Ren, F.; Liu, Y. Synthesis and application of single-atom catalysts in sulfur cathode for high-performance lithium-sulfur batteries. Chin. Chem. Lett. 2023, 34, 107121. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Liu, Y.; Ren, F. An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes. J. Mater. Chem. A 2022, 10, 17395–17405. [Google Scholar] [CrossRef]
- Guo, Y.P.; Li, H.Q.; Zhai, T.Y. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater. 2017, 29, 1700007. [Google Scholar] [CrossRef]
- Grey, C.P.; Tarascon, J.M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56. [Google Scholar] [CrossRef]
- Wu, N.T.; Zhao, Z.B.; Hua, R.; Wang, X.T.; Zhang, Y.M.; Li, J.; Liu, G.L.; Guo, D.L.; Sun, G.; Liu, X.M.; et al. Pre-Doping of Dual-Functional Sodium to Weaken Fe―S Bond and Stabilize Interfacial Chemistry for High-Rate Reversible Sodium Storage. Adv. Energy Mater. 2024, 14, 2400371. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Wei, H.-J.; Li, T.-F.; Xiong, X.-H.; Wei, S.-Z.; Ren, F.-Z.; Volinsky, A.A. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021, 40, 448–470. [Google Scholar] [CrossRef]
- Tao, F.; Liu, Y.; Ren, X.; Jiang, A.; Wei, H.; Zhai, X.; Wang, F.; Stock, H.-R.; Wen, S.; Ren, F. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives. J. Alloys Compd. 2021, 873, 159742. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Mohamed, I.M.A.; Chen, Z.; Chen, L.; Ihara, I.; Yap, P.-S.; Rooney, D.W. Strategies to save energy in the context of the energy crisis: A review. Environ. Chem. Lett. 2023, 21, 2003–2039. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, Q.; Pu, Y.; Sun, Q.; Sun, W.; Lu, L. Synergizing Spatial Confinement and Dual-Metal Catalysis to Boost Sulfur Kinetics in Lithium-Sulfur Batteries. Adv. Mater. 2023, 35, 2304120. [Google Scholar] [CrossRef]
- von Wald Cresce, A.; Xu, K. Aqueous lithium-ion batteries. Carbon Energy 2021, 3, 721–751. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, X.; Yao, X.; Xiao, W.-J.; Lin, J.; Li, W.-S. Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Org. Electron. 2016, 39, 1–9. [Google Scholar] [CrossRef]
- Wang, L.-P.; Wang, T.-S.; Yin, Y.-X.; Shi, J.-L.; Wang, C.-R.; Guo, Y.-G. Exploiting Lithium-Depleted Cathode Materials for Solid-State Li Metal Batteries. Adv. Energy Mater. 2019, 9, 1901335. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Liang, S.; Wu, Z.; Fang, G.; Cao, X.; Wang, C.; Lin, T.; Pan, A.; Zhou, J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 2019, 61, 617–625. [Google Scholar] [CrossRef]
- Zheng, M.; Tang, H.; Hu, Q.; Zheng, S.; Li, L.; Xu, J.; Pang, H. Tungsten-Based Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1707500. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhi, P.; Zhang, J.; Duan, S.; Yao, X.; Liu, S.; Sun, Z.; Jun, S.C.; Zhao, N.; Dai, L.; et al. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. Adv. Mater. 2024, 36, 2313152. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Shu, C.; Hu, A.; Zheng, R.; Li, M.; Ran, Z.; Long, J. Suppressing dendrite growth and side reactions on Zn metal anode via guiding interfacial anion/cation/H2O distribution by artificial multi-functional interface layer. Energy Storage Mater. 2022, 44, 452–460. [Google Scholar] [CrossRef]
- Lu, C.; Yang, Z.; Wang, Y.; Zhang, Y.; Wu, H.; Guo, Y.; Cai, W. Ethylene glycol-regulated ammonium vanadate with stable layered structure and favorable interplanar spacing as high-performance cathode for aqueous zinc ion batteries. Chin. Chem. Lett. 2023, 34, 108572. [Google Scholar] [CrossRef]
- Luo, H.; Deng, J.; Gou, Q.; Odunmbaku, O.; Sun, K.; Xiao, J.; Li, M.; Zheng, Y. Accelerated discovery of novel high-performance zinc-ion battery cathode materials by combining high-throughput screening and experiments. Chin. Chem. Lett. 2023, 34, 107885. [Google Scholar] [CrossRef]
- Xu, B.R.; Wang, G.B.; Liu, Y.; Li, Q.A.; Ren, F.Z.; Ma, J.M. Co-regulation effect of solvation and interface of pyridine derivative enabling highly reversible zinc anode. J. Mater. Sci. Technol. 2025, 204, 1–9. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J.P.; Pham, D.T.; Putro, D.Y.; et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309. [Google Scholar] [CrossRef]
- Han, D.L.; Wang, Z.X.; Lu, H.T.; Li, H.; Cui, C.J.; Zhang, Z.C.; Sun, R.; Geng, C.N.; Liang, Q.H.; Guo, X.X.; et al. A Self-Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Adv. Energy Mater. 2022, 12, 2102982. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Zhang, Y.; Li, Y.; Sun, R.; Wang, Z.; Wang, H. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 2021, 35, 19–46. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, Y.J.; Eom, S.W.; Choi, N.S.; Kim, K.W.; Cho, S.B. Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density. J. Power Sources 2013, 227, 177–184. [Google Scholar] [CrossRef]
- Caldeira, V.; Rouget, R.; Fourgeot, F.; Thiel, J.; Lacoste, F.; Dubau, L.; Chatenet, M. Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries. J. Power Sources 2017, 350, 109–116. [Google Scholar] [CrossRef]
- Xu, B.R.; Li, Q.A.; Liu, Y.; Wang, G.B.; Zhang, Z.H.; Ren, F.Z. Urea-induced interfacial engineering enabling highly reversible aqueous zinc-ion battery. Rare Met. 2024, 43, 1599–1609. [Google Scholar] [CrossRef]
- Liu, P.G.; Zhang, Z.Y.; Hao, R.; Huang, Y.P.; Liu, W.F.; Tan, Y.Y.; Li, P.L.; Yan, J.; Liu, K.Y. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 2021, 403, 126425. [Google Scholar] [CrossRef]
- Zhang, N.N.; Huang, S.; Yuan, Z.S.; Zhu, J.C.; Zhao, Z.F.; Niu, Z.Q. Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew. Chem.-Int. Ed. 2021, 60, 2861–2865. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Yang, F.; Xu, W.; Zeng, Y.X.; He, J.J.; Lu, X.H. Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite-Free Zn Anodes. Adv. Sci. 2020, 7, 2002173. [Google Scholar] [CrossRef]
- Liu, P.G.; Liu, W.F.; Huang, Y.P.; Li, P.L.; Yan, J.; Liu, K.Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Mater. 2020, 25, 858–865. [Google Scholar] [CrossRef]
- Yuan, D.; Manalastas, W.; Zhang, L.P.; Chan, J.J.; Meng, S.Z.; Chen, Y.Q.; Srinivasan, M. Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. Chemsuschem 2019, 12, 4889–4900. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, Y.; Zhao, Q.; Tang, J.; Zhang, Q.; Ke, X.; Liu, J.; Jin, Y.; Wang, H. Functional Separators Regulating Ion Transport Enabled by Metal-Organic Frameworks for Dendrite-Free Lithium Metal Anodes. Adv. Funct. Mater. 2021, 31, 2102938. [Google Scholar] [CrossRef]
- Feng, D.; Cao, F.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small 2021, 17, 2103195. [Google Scholar] [CrossRef]
- Du, W.; Ang, E.H.; Yang, Y.; Zhang, Y.; Ye, M.; Li, C.C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Yang, T.; Yu, L.; Wei, N.; Tian, Z.; Cai, J.; Lv, J.; Shao, Y.; Rummeli, M.H.; et al. Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Adv. Mater. 2020, 32, 2003425. [Google Scholar] [CrossRef]
- Li, Y.; Peng, X.; Li, X.; Duan, H.; Xie, S.; Dong, L.; Kang, F. Functional Ultrathin Separators Proactively Stabilizing Zinc Anodes for Zinc-Based Energy Storage. Adv. Mater. 2023, 35, 2300019. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Metallurgical Principles, 2nd ed.; Science Press: Beijing, China, 2018; p. 329. [Google Scholar]
- Zhai, X.; Xie, F. Heavy Metal Metallurgy, 2nd ed.; Metallurgical Industry Press: Beijing, China, 2019; p. 377. [Google Scholar]
- Liu, W.; Liu, W.; Jiang, Y.; Gui, Q.; Ba, D.; Li, Y.; Liu, J. Binder-free electrodes for advanced potassium-ion batteries: A review. Chin. Chem. Lett. 2021, 32, 1299–1308. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, W.; Tu, J.; Chen, S.; Liang, J.; Guo, X. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries. Prog. Chem. 2022, 34, 370–383. [Google Scholar] [CrossRef]
- Shi, X.; Xu, G.; Liang, S.; Li, C.; Guo, S.; Xie, X.; Ma, X.; Zhou, J. Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustain. Chem. Eng. 2019, 7, 17737–17746. [Google Scholar] [CrossRef]
- Fang, Y.; Han, K.; Wang, Z.; Shi, J.; Li, P.; Qu, X. Constructing a well-wettable interface on a three-dimensional copper foam host with reinforced copper nanowires to stabilize zinc metal anodes. J. Mater. Chem. A 2023, 11, 13742–13753. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Lett. 2022, 14, 42. [Google Scholar] [CrossRef]
- Nie, W.; Cheng, H.; Sun, Q.; Liang, S.; Lu, X.; Lu, B.; Zhou, J. Design Strategies toward High-Performance Zn Metal Anode. Small Methods 2024, 8, 2201572. [Google Scholar] [CrossRef]
- Guo, N.; Huo, W.; Dong, X.; Sun, Z.; Lu, Y.; Wu, X.; Dai, L.; Wang, L.; Lin, H.; Liu, H.; et al. A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods 2022, 6, 2200597. [Google Scholar] [CrossRef]
- Ji, H.; Xie, C.; Zhang, Q.; Li, Y.; Li, H.; Wang, H. Anode Current Collector for Aqueous Zinc-ion Batteries: Issues and Design Strategies. Acta Chim. Sin. 2023, 81, 29–41. [Google Scholar] [CrossRef]
- Zhou, B.; Bonakdarpour, A.; Stosevski, I.; Fang, B.; Wilkinson, D.P. Modification of Cu current collectors for lithium metal batteries—A review. Prog. Mater. Sci. 2022, 130, 100996. [Google Scholar] [CrossRef]
- Li, L.; Jia, S.; Cao, M.; Ji, Y.; Qiu, H.; Zhang, D. Research progress of “rocking chair” type zinc-ion batteries with zinc metal-free anodes. Chin. Chem. Lett. 2023, 34, 108307. [Google Scholar] [CrossRef]
- Tao, F.; Liu, Y.; Ren, X.; Wang, J.; Zhou, Y.; Miao, Y.; Ren, F.; Wei, S.; Ma, J. Different surface modification methods and coating materials of zinc metal anode. J. Energy Chem. 2022, 66, 397–412. [Google Scholar] [CrossRef]
- Cui, B.; Gao, Y.; Han, X.; Hu, W. Reversible Zn stripping/plating achieved by surface thin Sn layer for high-performance aqueous zinc metal batteries. J. Mater. Sci. Technol. 2022, 117, 72–78. [Google Scholar] [CrossRef]
- Jian, Q.; Guo, Z.; Zhang, L.; Wu, M.; Zhao, T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 2021, 425, 130643. [Google Scholar] [CrossRef]
- Tang, B.; Fan, H.; Liu, Q.; Zhang, Q.; Liu, M.; Wang, E. Stable Sn@Cu foam enables long cycling life of zinc metal anode for aqueous zinc batteries. Int. J. Energy Res. 2022, 46, 18562–18572. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Fu, L.; Wu, S.; Tang, Y.; Ji, X.; Wang, H. Insights into Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. Angew. Chem.-Int. Ed. 2019, 58, 15841–15847. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Li, P.; Wang, Y.; Zhao, X.; Safaei, J.; Tian, H.; Zhou, D.; Li, B.; Kang, F.; et al. Biomimetic Dendrite-Free Multivalent Metal Batteries. Adv. Mater. 2022, 34, 2206970. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Yu, H.; Liu, W.; Kuang, G.; Mei, L.; Wu, Z.; Wei, W.; Ji, X.; Qu, B.; et al. A Multifunctional Artificial Interphase with Fluorine-Doped Amorphous Carbon layer for Ultra-Stable Zn Anode. Adv. Funct. Mater. 2022, 32, 2205600. [Google Scholar] [CrossRef]
- Zeng, Y.; Sun, P.X.; Pei, Z.; Jin, Q.; Zhang, X.; Yu, L.; Lou, X.W. Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn-Metal Anodes. Adv. Mater. 2022, 34, 2200342. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Li, Y.; Wei, C.; Tao, Y.; Liu, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 2020, 400, 125843. [Google Scholar] [CrossRef]
- Liu, P.; Fan, X.; Ouyang, B.; Huang, Y.; Hao, R.; Gao, S.; Liu, W.; Liu, K. A Zn ion hybrid capacitor with enhanced energy density for anode-free. J. Power Sources 2022, 518, 230740. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Yu, H.; Fu, M.; Liu, W.; Zhao, Q.; Huang, S.; Zhou, L.; Wei, W.; Ji, X.; et al. Engineering an Ultrathin and Hydrophobic Composite Zinc Anode with 24 µm Thickness for High-Performance Zn Batteries. Adv. Funct. Mater. 2023, 33, 2303466. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, J.; Zhang, X.; Fang, J.; Lu, G.-P.; Huang, H. Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. Chin. Chem. Lett. 2022, 33, 186–196. [Google Scholar] [CrossRef]
- Peng, R.; Sun, C.; Yuan, B.; Ma, H.; Lai, C.; Wang, Q.; Li, L.; Wang, C. Direct evidence of the non-uniform electrodeposition of zinc at the early stage. Electrochem. Commun. 2023, 146, 107423. [Google Scholar] [CrossRef]
- Jian, Q.; Wan, Y.; Sun, J.; Wu, M.; Zhao, T. A dendrite-free zinc anode for rechargeable aqueous batteries. J. Mater. Chem. A 2020, 8, 20175–20184. [Google Scholar] [CrossRef]
- Kumar, S.; Yoon, H.; Park, H.; Park, G.; Suh, S.; Kim, H.-J. A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries. J. Ind. Eng. Chem. 2022, 108, 321–327. [Google Scholar] [CrossRef]
- Li, W.; Ma, Y.; Li, P.; Jing, X.; Jiang, K.; Wang, D. Electrochemically Activated Cu2-xTe as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Zn-Ion Half and Full Batteries. Adv. Energy Mater. 2021, 11, 2102607. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Wang, Z.; Lei, H.; Chen, Z.; Mai, W. Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. Small 2020, 16, 2001323. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 13180–13191. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Yang, Y.; Huang, F.; Zhu, M.; Ang, B.T.W.; Xue, J.M. Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2101607. [Google Scholar] [CrossRef]
- Ma, L.B.; Cui, J.; Yao, S.S.; Liu, X.M.; Luo, Y.S.; Shen, X.P.; Kim, J.K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Li, Q.; Hu, B.; Kang, J.; Meng, Y.; Zhao, Z.; Lu, H. Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries. Nano-Micro Lett. 2022, 14, 208. [Google Scholar] [CrossRef]
- Xie, C.; Ji, H.; Zhang, Q.; Yang, Z.; Hu, C.; Ji, X.; Tang, Y.; Wang, H. High-Index Zinc Facet Exposure Induced by Preferentially Orientated Substrate for Dendrite-Free Zinc Anode. Adv. Energy Mater. 2023, 13, 2203203. [Google Scholar] [CrossRef]
- Su, Y.; Chen, B.; Sun, Y.; Xue, Z.; Zou, Y.; Yang, D.; Sun, L.; Yang, X.; Li, C.; Yang, Y.; et al. Rationalized Electroepitaxy toward Scalable Single-Crystal Zn Anodes. Adv. Mater. 2023, 35, 2301410. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shu, C.; Zeng, T.; Wen, X.; Liu, S.; Deng, D.; Zeng, Y. Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode. ACS Nano 2022, 16, 9150–9162. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yang, Z.; Zhang, Q.; Ji, H.; Li, Y.; Wu, T.; Li, W.; Wu, P.; Wang, H. Designing Zinc Deposition Substrate with Fully Preferred Orientation to Elude the Interfacial Inhomogeneous Dendrite Growth. Research 2022, 2022, 9841343. [Google Scholar] [CrossRef] [PubMed]
- Xi, M.; Liu, Z.; Wang, W.; Qi, Z.; Sheng, R.; Ding, J.; Huang, Y.; Guo, Z. Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 2024, 17, 3168–3178. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, Y.; Lu, Y.; Hou, J.; Liu, X.; Yan, Z.; Chen, J. Facile Electrolytic (111)-Textured Copper Foil for Dendrite-Free Zinc Metal Batteries. Adv. Funct. Mater. 2024, 34, 2315726. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Meng, Y.; Xu, Y.; Sun, J.; Yuan, Y.; Chuai, M.; Chen, N.; Zheng, X.; Luo, R.; et al. Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Mater. 2023, 56, 424–431. [Google Scholar] [CrossRef]
- Camurcu, T.; Demirbas, E.; Ates, M.N. Achieving Long Cycle Life of Zn-Ion Batteries through Three-Dimensional Copper Foam. ACS Appl. Mater. Interfaces 2024, 16, 23209–23219. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, M.; Chen, G.; Qu, Z.; Kohn, B.; Scheler, U.; Chu, X.; Fu, Y.; Schmidt, O.G.; Feng, X. An Anode-Free Zn-Graphite Battery. Adv. Mater. 2022, 34, 2201957. [Google Scholar] [CrossRef]
- Huang, F.; Li, X.; Zhang, Y.; Jie, Y.; Mu, X.; Yang, C.; Li, W.; Chen, Y.; Liu, Y.; Wang, S.; et al. Surface Transformation Enables a Dendrite-Free Zinc-Metal Anode in Nonaqueous Electrolyte. Adv. Mater. 2022, 34, 2203710. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, Y.; Fang, H.; Chen, L.; Ying, J.; Guo, M.; Wang, Y.; Shen, Q.; Wang, X.; Wang, Y.; et al. Zincophilic Sn sites induced the local ion enrichment for compact and homogenous growth of Zn biscuits in long-life Zn metal batteries. J. Mater. Chem. A 2024, 12, 2283–2293. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, D.; Jiang, Y.; Cheng, F.; Sun, J.; Guo, Q.; Luo, Y.; Chen, Y.; Liu, W. Lightweight Zn-Philic 3D-Cu Scaffold for Customizable Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2312664. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Yang, K.; Ma, C.; Lu, W.; Bian, X.; Chen, N.; Jiang, H.; Li, Y.; Meng, X.; et al. Sandwich-structured anode enables high stability and enhanced zinc utilization for aqueous Zn-ion batteries. Energy Storage Mater. 2024, 64, 103078. [Google Scholar] [CrossRef]
- Tian, C.; Wang, H.; Xie, L.; Zhong, Y.; Hu, Y. Arrays of Hierarchical Zincophilic Nanorods with Trapping-and-Leveling Deposition for Ultrastable Zn Metal Anodes. Adv. Energy Mater. 2024, 14, 2400276. [Google Scholar] [CrossRef]
- Han, L.; Guo, Y.; Ning, F.; Liu, X.; Yi, J.; Luo, Q.; Qu, B.; Yue, J.; Lu, Y.; Li, Q. Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes. Adv. Mater. 2024, 36, 2308086. [Google Scholar] [CrossRef]
- Li, Y.-M.; Wang, Z.-W.; Li, W.-H.; Zhang, X.-Y.; Yin, C.; Li, K.; Guo, W.; Zhang, J.-P.; Wu, X.-L. Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries. Energy Storage Mater. 2023, 61, 102873. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, D.; Zhu, Z.; Lyu, N.; Jiang, X.; Duan, C.; Qin, Y.; Yuan, X.; Jin, Y. Three-in-One Zinc Anodes Created by a Large-scale Two-Step Method Achieving Excellent Long-Term Cyclic Reversibility and Thin Electrode Integrity. Adv. Sci. 2024, 11, 2401575. [Google Scholar] [CrossRef]
- Meng, H.; Ran, Q.; Dai, T.-Y.; Jia, J.-H.; Liu, J.; Shi, H.; Han, G.-F.; Wang, T.-H.; Wen, Z.; Lang, X.-Y.; et al. Lamellar Nanoporous Metal/Intermetallic Compound Heterostructure Regulating Dendrite-Free Zinc Electrodeposition for Wide-Temperature Aqueous Zinc-Ion Battery. Adv. Mater. 2024, 36, 2403803. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Z.; Sun, J.; Luo, R.; Xu, K.; Si, M.; Kang, J.; Yuan, Y.; Liu, S.; Ahmad, T.; et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 2023, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shi, X.; Liang, S.; Ma, X.; Han, M.; Wu, X.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X. Dendrite-Free Zinc Deposition Induced by Tin-Modified Multifunctional 3D Host for Stable Zinc-Based Flow Battery. Adv. Mater. 2020, 32, 1906803. [Google Scholar] [CrossRef] [PubMed]
- Fayette, M.; Chang, H.J.; Rodriguez-Perez, I.A.; Li, X.; Reed, D. Electrodeposited Zinc-Based Films as Anodes for Aqueous Zinc Batteries. ACS Appl. Mater. Interfaces 2020, 12, 42763–42772. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, X.; Li, M.; Yin, J.; Chen, J.; Li, F.; Shi, W.; Cheng, Y.; Wang, J. Overcoming Challenges: Extending Cycle Life of Aqueous Zinc-Ion Batteries at High Zinc Utilization through a Synergistic Strategy. Small 2024, 20, 2308273. [Google Scholar] [CrossRef]
- Yuan, W.; Nie, X.; Ma, G.; Liu, M.; Wang, Y.; Shen, S.; Zhang, N. Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries. Angew. Chem.-Int. Ed. 2023, 62, e202218386. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, K.; Han, J.; Wang, F.; Xing, Y.; Tao, F.; Li, H.; Xu, B.; Ji, J.; Li, H. Regulation of Zn2+ solvation shell by a novel N-methylacetamide based eutectic electrolyte toward high-performance zinc-ion batteries. J. Mater. Sci. Technol. 2025, 211, 53–61. [Google Scholar] [CrossRef]
- Wang, L.; Fan, G.; Liu, J.; Zhang, L.; Yu, M.; Yan, Z.; Cheng, F. Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chin. Chem. Lett. 2021, 32, 1095–1100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, F.; Xing, Y.; Kong, C.; Gao, Y.; Jia, Z.; Wang, G.; Pei, Y.; Liu, Y. Modification of Cu-Based Current Collectors and Their Application in High-Performance Zn Metal Anode: A Review. Coatings 2024, 14, 1300. https://doi.org/10.3390/coatings14101300
Gao X, Wang F, Xing Y, Kong C, Gao Y, Jia Z, Wang G, Pei Y, Liu Y. Modification of Cu-Based Current Collectors and Their Application in High-Performance Zn Metal Anode: A Review. Coatings. 2024; 14(10):1300. https://doi.org/10.3390/coatings14101300
Chicago/Turabian StyleGao, Xiujie, Fei Wang, Yibo Xing, Chunyang Kong, Yumeng Gao, Zhihui Jia, Guangbin Wang, Yifei Pei, and Yong Liu. 2024. "Modification of Cu-Based Current Collectors and Their Application in High-Performance Zn Metal Anode: A Review" Coatings 14, no. 10: 1300. https://doi.org/10.3390/coatings14101300