Application Prospect of Multifunctional Hydrogel Coating in Household Field
Abstract
:1. Introduction
2. Preparation Methods of Hydrogel Coating
2.1. Physical Crosslinking Method
2.2. Chemical Crosslinking Method
3. Research Progress in Modification of Hydrogel Coatings
3.1. Advantages Strengthening of Hydrogel Coating
3.2. Disadvantages Improvement of Hydrogel Coating
4. Interface Bonding Between Hydrogel Coating and Furniture Materials
4.1. Combination of Hydrogel Coating and Wood Furniture
4.2. Combination of Hydrogel Coating and Metal Furniture
4.3. Combination of Hydrogel Coating and Upholstered Furniture (Fabric, Leather)
5. Application Prospect of Hydrogel Coating in Household Field
5.1. Surface Coating of Kitchen and Bathroom Furniture
5.2. Surface Application of Soft Furniture
5.3. Flame Retardant Coating on the Surface of Wooden Furniture
5.4. Surface Coating of Preschool Furniture
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.S.; Zhang, X.R.; Ma, X.T.; Wang, W.Q.; Yan, F.Y.; Zhao, X.H.; Chu, X.X.; Xu, W.L.; Sun, C.M. A review of the properties and applications of bioadhesive hydrogels. Polym. Chem. 2021, 12, 3721–3739. [Google Scholar] [CrossRef]
- Warren, D.S.; Sutherland, S.P.H.; Kao, J.Y.; Weal, G.R.; Mackay, S.M. The preparation and simple analysis of a clay nanoparticle composite hydrogel. J. Chem. Educ. 2017, 94, 1772–1779. [Google Scholar] [CrossRef]
- Yang, X.; Gao, L.; Wei, Y.F.; Tan, B.W.; Wu, Y.Z.; Yi, C.; Liao, J.F. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J. Nanobiotechnol. 2021, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018, 127, 167–184. [Google Scholar] [CrossRef]
- Zheng, C.L.; Wang, Q.R.; Geng, G.Q.; Wang, Z.X.; Zhuo, H. Adsorption of lead ions by a kind of MAL modified hydrogel beads. Trans. Nonferrous Met. Soc. China 2022, 32, 2770–2786. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Gu, X.S.; Leong, K.W. Biophysical regulation of cell behaviour—Cross talk between substrate stiffness and nanotopography. Engineering 2017, 3, 81–119. [Google Scholar] [CrossRef]
- Cao, X.; Maharjan, S.; Ashfaq, R.; Shin, J.; Zhang, Y.S. Bioprinting of small-diameter blood. Engineering 2021, 7, 282–308. [Google Scholar] [CrossRef]
- Liang, L.L.; Liang, X.; Lin, X.Y.; Zhang, H.; Pang, C.X.; Pan, X.H.; Hu, Y.; Chen, Y.; Luo, X.G. Construction mechanism of gellan gum/chitosan/calcium ion multiple-network hydrogel by self-assembly strategy and its regulation. Polym. Eng. Sci. 2020, 393, 124728. [Google Scholar] [CrossRef]
- Tsitsilianis, C. Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 2010, 6, 2372–2388. [Google Scholar] [CrossRef]
- Ko, D.Y.; Shinde, U.P.; Yeon, B.; Jeong, B. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013, 38, 672–701. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Ann. New York Acad. Sci. 2001, 944, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Demott, C.J.; Jones, M.R.; Chesney, C.D.; Yeisley, D.J.; Culibrk, R.A.; Hahn, M.S.; Grunlan, M.A. Ultra-high modulus hydrogels mimicking cartilage of the human body. Macromol. Biosci. 2022, 22, 2200283. [Google Scholar] [CrossRef]
- Madduma-Bandarage, U.S.K.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138, 50376. [Google Scholar] [CrossRef]
- Sekizkardes, B.; Su, E.; Okay, O. Mechanically strong superabsorbent terpolymer hydrogels based on AMPS via hydrogen-bonding interactions. ACS Appl. Polym. Mater. 2023, 5, 2043–2050. [Google Scholar] [CrossRef]
- Xu, L.J.; Qiao, Y.; Qiu, D. Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 2023, 35, 2209913. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.X.; Ding, H.Y.; Wang, Q.; Sun, G.X. Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. Eur. Polym. J. 2019, 120, 109278. [Google Scholar] [CrossRef]
- Lee, J.; Seo, M. Downsizing of block polymer-templated nanopores to one nanometer via hyper-cross-linking of high χ-low N precursors. ACS Nano 2021, 15, 9154–9166. [Google Scholar] [CrossRef]
- Norioka, C.; Inamoto, Y.; Hajime, C.; Kawamura, A.; Miyata, T. A universal method to easily design tough and stretchable hydrogels. NPG Asia Mater. 2021, 13, 34. [Google Scholar] [CrossRef]
- Mu, H.L.; Zhou, G.L.; Hu, X.Q.; Jian, Z.B. Recent advances in nickel mediated copolymerization of olefin with polar monomers. Coord. Chem. Rev. 2021, 435, 213802. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Haque, M.O.; Ahmed, F.; Pervez, M.N.; Naddeo, V.; Ahmed, M.B. Super-adsorptive biodegradable hydrogel from simply treated sugarcane bagasse. Gels 2022, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, X.; Zhang, X.J. Recent developments in the area of click-crosslinked nanocarriers for drug delivery. Macromol. Rapid Commun. 2019, 40, 1800541. [Google Scholar] [CrossRef]
- Chambre, L.; Degirmenci, A.; Sanyal, R.; Sanyal, A. Multi-functional nanogels as theranostic platforms, exploiting reversible and nonreversible linkages for targeting, imaging, and drug delivery. Bioconjug. Chem. 2018, 29, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, N.; Diedrich, N.; Rupp, H.; Doehler, D.; Binder, W.H. Improving kinetics of “click-crosslinking” for self-healing nanocomposites by graphene-supported Cu-nanoparticles. Polymers 2018, 10, 17. [Google Scholar] [CrossRef]
- Maiz-Fernandez, S.; Perez-Alvarez, L.; Silvan, U.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. Int. J. Biol. Macromol. 2022, 216, 291–302. [Google Scholar] [CrossRef]
- Kim, E.H.; Han, G.D.; Noh, S.H.; Kim, J.W.; Lee, J.G.; Ito, Y.; Son, T.I. Photo-reactive natural polymer derivatives for medical application. J. Ind. Eng. Chem. 2017, 54, 1–13. [Google Scholar] [CrossRef]
- Sulaiman, S.; Rani, R.A.; Yahaya, N.H.M.; Tabata, Y.; Hiraoka, Y.; Seet, W.T.; Ng, H. Physical and natural crosslinking approaches on three-dimensional gelatin microspheres for cartilage regeneration. Tissue Eng. Part. C-Methods 2022, 28, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Shin, G.; Park, S.I.; Yu, K.J.; Xu, L.Z.; Rogers, J.A. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 2015, 86, 75–186. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef]
- Yang, J.P.; Xue, B.; Zhou, Y.Y.; Qin, M.; Wang, W.; Cao, Y. Spray-painted hydrogel coating for marine antifouling. Adv. Mater. Technol. 2021, 6, 2000911. [Google Scholar] [CrossRef]
- Ren, X.T.; Guo, M.S.; Xue, L.L.; Zeng, Q.Y.; Gao, X.Z.; Xin, Y.L.; Xu, L.K.; Li, L. A self-cleaning mucus-like and hierarchical ciliary bionic surface for marine antifouling. Adv. Eng. Mater. 2020, 22, 1901198. [Google Scholar] [CrossRef]
- Hu, J.P.; Zhang, D.Z.; Li, W.B.; Shan, G.R.; Zuo, M.; Song, Y.H.; Wu, Z.L.; Ma, L.; Zheng, Q.; Du, M. Construction of a soft antifouling PAA/PSBMA hydrogel coating with high toughness and low swelling through the dynamic coordination bonding provided by Al(OH)3 nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 6433–6446. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Liu, J.R.; Suryawanshi, A.; He, H.L.; Wang, Y.S.; Zhao, Y.H. Thermal insulating and fire-retarding behavior of treated cotton fabrics with a novel high water-retaining hydrogel used in thermal protective clothing. Cellulose 2021, 28, 2581–2597. [Google Scholar] [CrossRef]
- Zhao, X.J.; Tian, M.; Wei, R.C.; Jiang, S.H. Facile fabrication of a novel self-healing and flame-retardant hydrogel/MXene coating for wood. Sci. Rep. 2023, 13, 1826. [Google Scholar] [CrossRef]
- Ingtipi, K.; Choudhurd, B.J.; Moholkar, V.S. Development of NaOH-borax crosslinked PVA-xanthan gum-lignin hydrogel as green fire retardant coating. Prog. Org. Coat. 2023, 174, 107268. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Feng, D.Q.; Zhu, P.Y.; Song, W.L.; Yasir, M.; Zhang, C.; Liu, L. Hydrogel-anchored Fe-based amorphous coatings with integrated antifouling and anti-corrosion functionality. ACS Appl. Mater. Interfaces 2023, 15, 13644–13655. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, Y.C.; Xi, M.; Li, G.B.; Jiang, Y. One-Step Preparation of adhesive composite hydrogels through fast and simultaneous in situ formation of silver nanoparticles and crosslinking. Gels 2022, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.F.; Zhou, L.; Han, P.; Qiao, G.F. UV-initiated frontal polymerization for the fast synthesis of bubble-free, self-propagating hydrogel anticorrosive coatings. ACS Appl. Mater. Interfaces 2023, 15, 28618–28625. [Google Scholar] [CrossRef]
- Xu, T.; Gao, Z.S.; Li, F.C.; Miao, G.; Jia, Y.Y.; Miao, X.; Zhu, X.T.; Lu, J.W.; Wang, B.; Song, Y.M.; et al. A slippery hydrogel coating with durable oil-repellent property and self-regeneration capacity. Sci. China Technol. Sci. 2022, 65, 1819–1827. [Google Scholar] [CrossRef]
- Wang, P.X.; Fang, S.K.; Li, H.R.; Feng, S.D.; Yu, Y.; Zhang, H.; Liu, Y.F.; Guo, J. Application of PVA/TA-Fe3+ submerged superoleophobic hydrogel coating in oil-water separation. React. Funct. Polym. 2023, 192, 105700. [Google Scholar] [CrossRef]
- You, H.; Song, G.; Liu, Q.F.; Yang, C.; Qiu, J.F.; Zang, L.M.; Liu, H.; Chen, J.C. A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation. Appl. Surf. Sci. 2021, 537, 147986. [Google Scholar] [CrossRef]
- Zhao, C.W.; Zhou, L.; Chiao, M.; Yang, W.T. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv. Colloid. Interface Sci. 2020, 285, 102280. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Yang, H.; Cai, Y.W.; Gu, R.H.; Chen, Y.; Wang, Y.M.; Dong, Y.H.; Zhao, Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int. J. Biol. Macromol. 2024, 282, 136405. [Google Scholar] [CrossRef] [PubMed]
- Popescu, I.; Constantin, M.; Pelin, I.M.; Suflet, D.M.; Ichim, D.L.; Daraba, O.M.; Fundueanu, G. Eco-friendly synthesized PVA/Chitosan/Oxalic acid nanocomposite hydrogels embedding silver nanoparticles as antibacterial materials. Gels 2022, 8, 268. [Google Scholar] [CrossRef]
- Su, X.; Luo, Y.; Tian, Z.; Yuan, Z.Y.; Han, Y.M.; Dong, R.F.; Xu, L.; Feng, Y.T.; Liu, X.Z.; Huang, J.Y. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater. Horiz. 2020, 7, 2651–2661. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yao, A.F.; Raffa, P. Transparent, highly stretchable, self-healing, adhesive, freezing-tolerant, and swelling-resistant multifunctional hydrogels for underwater motion detection and information transmission. Adv. Funct. Mater. 2024, 34, 2407529. [Google Scholar] [CrossRef]
- Bi, M.L.; Guan, X.; Sun, S.Y.; Jin, Z.H.; Gao, H.J.; Sun, J.; Gao, Z.J. An anti-swelling chitosan-based hydrogel driven by balance of hydrophilic segment and hydrophobic segment strategy for underwater detection of human motion. Eur. Polym. J. 2024, 205, 112715. [Google Scholar] [CrossRef]
- Zhao, X.H.; Chen, X.Y.; Yuk, H.; Lin, S.T.; Lin, X.Y.; Parada, G. Soft materials by design unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372. [Google Scholar] [CrossRef]
- Naficys, S.; Brown, H.R.; Razal, J.M.; Spinks, G.M.; Whitten, P.G. Progress toward robust polymer hydrogels. Aust. J. Chem. 2011, 64, 1007–1025. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, D.; Gong, L.; Zhang, Y.X.; Xie, S.W.; Ren, B.P.; Liu, Y.L.; Yang, F.Y.; Zhou, G.Y.; Chang, Y.; et al. Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels. Macromolecules 2019, 52, 9512–9525. [Google Scholar] [CrossRef]
- Lanchis, R.; Alexa, R.L.; Gifu, I.C.; Marin, M.M.; Alexandrescu, E.; Constantinescu, R.; Serafim, A.; Nistor, C.L.; Petcu, C. Novel green crosslinked salecan hydrogels and preliminary investigation of their use in 3D printing. Pharmaceutics 2023, 15, 373. [Google Scholar] [CrossRef]
- Prucher, O.; Brandstetter, T.; Ruhe, J. Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases 2017, 13, 010801. [Google Scholar] [CrossRef]
- Liu, J.J.; Qu, S.X.; Suo, Z.G.; Yang, W. Functional hydrogel coatings. Natl. Sci. Rev. 2021, 8, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, N.; Liu, S. Versatile surface biofunctionalization of poly(ethylene terephthalate)by interpenetrating polymerization of a butynyl monomer followed by “Click Chemistry”. Polymer 2012, 53, 67–78. [Google Scholar] [CrossRef]
- Dai, S.M. Preparation and properties of antibacterialfunctional hydrogel coating for lubrication ofmedical cathete. Master’s Thesis, Changchun University of Technology, Changchun, China, 2023. (In Chinese). [Google Scholar]
- Zhang, Q.H. Furniture Materials, 2nd ed.; China Forestry Handbook; China Forestry Publishing House: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Kwon, H.M.; Kim, N.H.; Hong, S.J.; Sim, W.H.; Lee, M.; Son, S.; Bae, K.Y.; Kim, J.Y.; Youn, D.H.; Kim, Y.S.; et al. Uniform Li-metal growth on renewable lignin with lithiophilic functional groups derived from wood for high-performance Li-metal batteries. Surf. Interfaces 2024, 44, 103643. [Google Scholar] [CrossRef]
- Wang, R.; Li, N.; Jiang, B.; Li, J.H.; Hong, W.; Jiao, T.F. Facile preparation of agar/polyvinyl alcohol-based triple-network composite hydrogels with excellent mechanical performances. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126270. [Google Scholar] [CrossRef]
- Vincent, N.N.; Guo, M.; Xiang, P.C.; Geng, Z.M.; Fang, T. Preparation of a new boron CTS hydrogel and its effect on wood preservation. For. Sci. Technol. 2021, 46, 37–43. [Google Scholar]
- da Silva, B.C.; Bastos, A.C.; Tedim, J.; Ferreira, M.G.S.; Marino, C.E.B.; Riegel-Vidotti, I.C. On Demand release of cerium from an Alginate/Cerium complex for corrosion protection of AISI1020 and AA2024 substrates. J. Braz. Chem. Soc. 2022, 33, 987–996. [Google Scholar] [CrossRef]
- Feng, X.Z.; Wang, C.; Shang, S.B.; Liu, H.; Huang, X.J.; Jiang, J.X.; Song, Z.Q.; Zhang, H.B. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr. Polym. 2023, 311, 120786. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, S.M.; Joen, H.; Hwang, S.Y.; Oh, D.X.; Park, J. Skin-inspired hydrogel-elastomer hybrid forms a seamless interface by autonomous hetero-self-healing. ACS Appl. Polym. Mater. 2020, 2, 5352–5357. [Google Scholar] [CrossRef]
- Li, W.C.; Liu, X.B.; Deng, Z.S.; Chen, Y.T.; Yu, Q.Q.; Tang, W.; Sun, T.L.; Zhang, Y.S.; Yue, K. Tough bonding, on-demand debonding, and facile rebonding between hydrogels and diverse metal surfaces. Adv. Mater. 2019, 31, 1904732–1904739. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.N.; Zhang, Y.L.; Ma, S.H.; Ma, Z.F.; Yu, B.; Cai, M.R.; Zhou, F. A universal strategy for growing a tenacious hydrogel coating from a sticky initiation layer. Adv. Mater. 2022, 34, 2108889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.T.; Lu, H.D.; Yun, G.L.; Gong, L.P.; Chen, Z.X.; Jin, S.D.; Du, H.P.; Jiang, Z.; Li, W.H. A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity. Adv. Funct. Mater. 2024, 34, 2308113. [Google Scholar] [CrossRef]
- Lee, S.; Park, C.H. Conductivity, superhydrophobicity and mechanical properties of cotton fabric treated with polypyrrole by in-situ polymerization using the binary oxidants ammonium Peroxodisulfate and ferric chloride. Text. Res. J. 2019, 89, 2376–2394. [Google Scholar] [CrossRef]
- Huang, M.L.; Si, Y.; Tang, X.M.; Zhu, Z.G.; Ding, B.; Liu, L.F.; Zheng, G.; Luo, W.J.; Yu, J.Y. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A 2013, 1, 14071–14074. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, X.Y.; Mao, Y.; Lv, W.Y.; Li, N. A study on the preparation and performance of polyaniline composite conductive fabric-enhanced hydrogel sensors. J. Silk 2024, 61, 69–78. [Google Scholar]
- Zhang, G.Y.; Liu, C.; Yang, L.J.; Kong, Y.; Fan, X.; Zhang, J.; Liu, X.Y.; Yuan, B.H. A flame-retardant and conductive fabric-based triboelectric nanogenerator, Application in fire alarm and emergency evacuation. J. Colloid. Interface Sci. 2024, 658, 219–229. [Google Scholar] [CrossRef]
- Khan, A.Q.; Yu, K.Q.; Li, J.T.; Leng, X.Q.; Wang, M.L.; Zhang, X.S.; An, B.G.; Fei, B.; Wei, W.; Zhuang, H.C.; et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv. Fiber Mater. 2022, 4, 1572–1583. [Google Scholar] [CrossRef]
- Han, H.; Zhu, J.; Wu, D.Q.; Li, F.X.; Wang, X.L.; Yu, J.Y.; Qin, X.H. Inherent guanidine nanogels with durable antibacterial and bacterially antiadhesive properties. Adv. Funct. Mater. 2019, 29, 1806594. [Google Scholar] [CrossRef]
Method | Features | Advantages and Disadvantages | |
---|---|---|---|
Physical crosslinking method | Electrostatic interaction | Mild reaction conditions and easy implementation | No initiator, non-toxic, and green, but poor thermal stability and thermal reversibility |
Crystal crosslinking | Thermal reversibility | ||
Chemical crosslinking method | Monomer crosslinking polymerization | Based on monomers, with high structural and performance controllability | High strength and good stability, but the initiator is toxic |
Graft copolymerization | Using natural polymers as the matrix, combining the advantages of natural polymers and synthetic monomers | ||
Water-soluble polymer crosslinking | Based on the original polymer structure, the reaction is mild, there are multiple technological choices, and it has many applications in the fields of biology and daily life |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, Z. Application Prospect of Multifunctional Hydrogel Coating in Household Field. Coatings 2024, 14, 1580. https://doi.org/10.3390/coatings14121580
Chen Z, Wu Z. Application Prospect of Multifunctional Hydrogel Coating in Household Field. Coatings. 2024; 14(12):1580. https://doi.org/10.3390/coatings14121580
Chicago/Turabian StyleChen, Zhangbei, and Zhihui Wu. 2024. "Application Prospect of Multifunctional Hydrogel Coating in Household Field" Coatings 14, no. 12: 1580. https://doi.org/10.3390/coatings14121580
APA StyleChen, Z., & Wu, Z. (2024). Application Prospect of Multifunctional Hydrogel Coating in Household Field. Coatings, 14(12), 1580. https://doi.org/10.3390/coatings14121580