Could Marginal Adaptation of Composite Resin Restorations Be Influenced by a Different Polymer Using Different Techniques?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Selection
2.2. Specimen Preparation
2.3. Restorative Clinical Protocol
2.4. Analysis of Marginal Microleakage
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, R.L. Properties of silica reenforced polymer for dental restorations. J. Amer. Dent. Assoc. 1963, 66, 57–64. [Google Scholar] [CrossRef]
- Shah, P. Alternatives to traditional posterior direct restorations. Dent. Today 2015, 34, 114–117. [Google Scholar] [PubMed]
- Jandt, D.K.; Sigusch, W.B. Future perspectives of resin-based dental materials. J. Dent. Mater. 2009, 25, 1001–1006. [Google Scholar] [CrossRef]
- Calheiros, F.C.; Daronch, M.; Rueggeberg, F.A.; Braga, R.R. Effect of temperature on composite polymerization stress and degree of conversion. Dent. Mater. 2014, 30, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Nemt-Allah, A.A.; Ibrahim, S.H.; El-Zoghby, A.F. Marginal integrity of composite restoration with and without surface pretreatment by gold and silver nanoparticles vs. chlorhexidine: A randomized controlled trial. J. Contemp. Dent. Pract. 2022, 22, 1087–1097. [Google Scholar] [CrossRef]
- De Abreu, N.M.R.; Bernardes, P.; De Sousa, F.B.; Raposo, L.H.A.; Da Silva, N.J.P. Influence of carbonated acid beverage on fracture resistance and marginal gap formation in different restorative approaches to non-carious cervical lesions. Clin. Oral Investig. 2023, 27, 2245–2253. [Google Scholar] [CrossRef]
- Rathi, S.D.; Nikhade, P.; Chandak, M.; Motwani, N.; Rathi, C.; Chandak, M. Microleakage in composite resin restoration-a review article. J. Evol. Med. Dent. Sci. 2020, 9, 1006–1011. [Google Scholar] [CrossRef]
- Gharizadeh, N.; Moradi, K.; Haghighizadeh, M.H. A study of microleakage in Class II composite restorations using four different curing techniques. Oper. Dent. 2007, 32, 336–340. [Google Scholar] [CrossRef] [PubMed]
- May, S.; Cieplik, F.; Hiller, K.A.; Buchalla, W.; Federlin, M.; Schmalz, G. Flowable composites for restoration of non-carious cervical lesions: Three-year results. Dent. Mater. 2017, 33, e136–e145. [Google Scholar] [CrossRef]
- Mosharrafian, S.; Farahmand, N.; Poorzandpoush, K.; Hosseinipour, Z.S.; Kahforushan, M. In vitro microleakage at the enamel and dentin margins of class II cavities of primary molars restored with a bulk-fill and a conventional composite. Clin. Exp. Dent. Res. 2023, 9, 512–517. [Google Scholar] [CrossRef]
- Sangwan, B.; Rishi, R.; Seal, M.; Jain, K.; Dutt, P.; Talukdar, P. An in vitro evaluation of fracture resistance of endodontically treated teeth with different restorative materials. J. Contemp. Dent. Pract. 2016, 17, 549–552. [Google Scholar] [PubMed]
- Chan, T.; Küçükkaya, E.S.; Wong, R.; Parashos, P. In vitro fracture strength and patterns in root-filled teeth restored with different base materials. Aust. Dent. J. 2018, 63, 99–108. [Google Scholar] [CrossRef]
- Pamato, S.; Ricci, W.A.; Kuga, M.C.; de Oliveira, E.C.G.; Moraes, J.C.S.; Só, M.V.R.; Trevisan, T.C.; Júnior, N.F.; Pereira, J.R. The Influence on Fracture Resistance of Different Composite Resins and Prefabricated Posts to Restore Endodontically Treated Teeth. Polymers 2023, 15, 236. [Google Scholar] [CrossRef]
- Vermudt, A.; Kuga, M.C.; Besegato, J.F.; De Oliveira, E.C.G.; Leandrin, T.P.; Só, M.V.R.; Moraes, J.C.S.; Pereira, J.R. Effect of Curing Modes on the Mechanical Properties of Commercial Dental Resin-Based Composites: Comparison between Different LEDs and Microwave Units. Polymers 2022, 14, 4020. [Google Scholar] [CrossRef] [PubMed]
- Topa-Skwarczyńska, M.; Ortyl, J. Photopolymerization shrinkage: Strategies for reduction, measurement methods and future insights. Polym. Chem. 2023, 14, 2145–2158. [Google Scholar] [CrossRef]
- Diniz, M.B.; Eckert, G.J.; González-Cabezas, C.; Cordeiro, R.C.; Ferreira-Zandona, A.G. Caries detection around restorations using ICDAS and optical devices. J. Esthet. Restor. Dent. 2016, 28, 110–121. [Google Scholar] [CrossRef]
- Sakaguchi, R.L.; Peters, M.C.; Nelson, S.R.; Douglas, W.H.; Poort, H.W. Effects of polymerization contraction in composite restorations. J. Dent. 1992, 20, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Magni, E.; Zhang, L.; Hickel, R.; Bossù, M.; Polimeni, A.; Ferrari, M. SEM and microleakage evaluation of the marginal integrity of two types of class V restorations with or without the use of a light-curable coating material and of polishing. J. Dent. 2008, 36, 885–891. [Google Scholar] [CrossRef]
- Bud, M.G.; Pop, R.C.; Pricope, R.; Mesaros, A.; Voina, A.; Delean, A.; Cîmpean, S. Comparative microleakage outcomes of different techniques used for creating the occlusal anatomy in occlusal direct restorations using the dental operating microscope. Clin. Exp. Dent. Res. 2022, 8, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Kim, Y.J.; Choi, N.S.; Lee, I.B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef]
- Rullman, I.; Patyna, M.; Janssen, B.; Willershausen, B. Determination of polymerization shrinkage of different composites using a photoelastic method. Am. J. Dent. 2017, 30, 16–22. [Google Scholar]
- Taguet, A.; Bureau, M.N.; Huneault, M.A.; Favis, B.D. Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends. Carbohydr. Polym. 2014, 114, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, A.A.; Valdívia, A.D.; Barreto, B.C.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Incremental filling technique and composite material--part II: Shrinkage and shrinkage stresses. Oper. Dent. 2014, 39, E83–E92. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Troconis, C.C.M.; Moreno, M.B.P.; Murillo-Gómez, F.; De Goes, M.F. Depth of cure of bulk fill resin composites: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Catelan, A.; Mainardi, M.C.; Soares, G.P.; De Lima, A.F.; Ambrosano, G.M.; Lima, D.A.; Marchi, G.M.; Aguiar, F.H. Effect of light curing protocol on degree of conversion of composites. Acta Odontol. Scand. 2014, 72, 898–902. [Google Scholar] [CrossRef]
- Singh, T.V.; Patil, J.P.; Raju, R.C.; Venigalla, B.S.; Jyotsna, S.V.; Bhutani, N. Comparison of effect of c-factor on bond strength to human dentin using different composite resin materials. J. Clin. Diagn. Res. 2015, 9, ZC88–ZC91. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.L.; Borges, A.B.; Xavier, T.A.; Bottino, M.C.; Platt, J.A. Impact of quantity of resin, C-factor, and geometry on resin composite polymerization shrinkage stress in Class V restorations. Oper. Dent. 2014, 39, 144–151. [Google Scholar] [CrossRef]
- Mehl, A.; Hickel, R.; Kunzelmann, K.H. Physical properties and gap formation of light-cured composites with and without ‘softstart-polymerization’. J. Dent. 1997, 25, 321–330. [Google Scholar] [CrossRef]
- Guan, X.; Zhu, T.; Zhang, D. Development in polymerization shrinkage control of dental light-cured resin composites: A literature review. J. Adhes. Sci. Technol. 2022, 37, 602–623. [Google Scholar] [CrossRef]
Group | Score 1 | Score 2 | Score 3 | Score 4 | Score 5 |
---|---|---|---|---|---|
Control | 7 | 11 | 2 | 0 | 0 |
Experimental | 0 | 1 | 11 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.R.; Vermudt, A.; Junior, A.R.; Bordignon, D.S.; Medeiros, H.V.; Galvani, L.D.; Rosa, R.A.d.; Só, M.V.R.; Kuga, M.C. Could Marginal Adaptation of Composite Resin Restorations Be Influenced by a Different Polymer Using Different Techniques? Coatings 2024, 14, 1618. https://doi.org/10.3390/coatings14121618
Pereira JR, Vermudt A, Junior AR, Bordignon DS, Medeiros HV, Galvani LD, Rosa RAd, Só MVR, Kuga MC. Could Marginal Adaptation of Composite Resin Restorations Be Influenced by a Different Polymer Using Different Techniques? Coatings. 2024; 14(12):1618. https://doi.org/10.3390/coatings14121618
Chicago/Turabian StylePereira, Jefferson Ricardo, Alef Vermudt, Ageu Raupp Junior, Diego Saccon Bordignon, Henrique Vieira Medeiros, Lucas David Galvani, Ricardo Abreu da Rosa, Marcus Vinicius Reis Só, and Milton Carlos Kuga. 2024. "Could Marginal Adaptation of Composite Resin Restorations Be Influenced by a Different Polymer Using Different Techniques?" Coatings 14, no. 12: 1618. https://doi.org/10.3390/coatings14121618
APA StylePereira, J. R., Vermudt, A., Junior, A. R., Bordignon, D. S., Medeiros, H. V., Galvani, L. D., Rosa, R. A. d., Só, M. V. R., & Kuga, M. C. (2024). Could Marginal Adaptation of Composite Resin Restorations Be Influenced by a Different Polymer Using Different Techniques? Coatings, 14(12), 1618. https://doi.org/10.3390/coatings14121618