Enhancement of Antibacterial Silk Face Covering with the Biosynthesis of Silver Nanoparticles from Garcinia mangostana Linn. Peel and Andrographis paniculata Extract and a Bacterial Cellulose Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Bacterial Cellulose Filter Sheet from Nata de Coco
2.2.2. Biosynthesis of Silver Nanoparticles
2.2.3. Preparation of Andrographis paniculata Crude Extract
2.2.4. Silver Nanoparticle Coating Method
2.2.5. Characterization Method
2.2.6. Antimicrobial Properties of Silver Nanoparticles and Andrographis paniculata Extract
2.2.7. Synergistic Antibacterial Effect of Silver Nanoparticles and Andrographis paniculata Extract
2.2.8. Antibacterial Activity Evaluation
2.2.9. Performance of the Silk Face Covering
3. Results
3.1. Physical Properties of Bacterial Cellulose Filter
3.2. Antimicrobial Property of Silver Nanoparticle and Andrographis paniculata Extract
3.3. Synergistic Antibacterial Activity of Garcinia mangostana Linn. and Andrographis paniculata
3.4. Antibacterial Property of Silver Nanoparticles Coated on Cotton Fabric
3.5. Performance of the Silk Face Covering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freeman, C.; Burch, R.; Strawderman, L.; Black, C.; Saucier, D.; Rickert, J.; Wilson, J.; Bealor, S.A.; Ratledge, M.; Fava, S. Preliminary evaluation of filtration efficiency and differential pressure ASTM F3502 testing methods of non-medical masks using a face filtration mount. Int. J. Environ. Res. Public Health 2021, 18, 4124. [Google Scholar] [CrossRef] [PubMed]
- Brosseau, L.M.; Stull, J. Criticism of workplace protection barrier face covering article mischaracterizes ASTM standard and its potential utility. New Solut. 2023, 33, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Alby, L.; Jayswal, A.; Morris, S.; McAtee, W.; Raghav, V.; Adanur, S. A novel face mask design with improved properties for COVID-19 prevention. Text. Res. J. 2023, 93, 2754–2764. [Google Scholar] [CrossRef]
- Phromphen, P.; Sukatta, U.; Rugthaworn, P.; Boonyarit, J.; Phoophat, P.; Rungruangkitkrai, N.; Tuntariyanond, P.; Chartvivatpornchai, N.; Apipatpapha, T.; Chollakup, R. Biosynthesis of silver nanoparticles enhanced antibacterial silk face covering. J. Nat. Fibers 2023, 20, 2212926. [Google Scholar] [CrossRef]
- Hao, W.; Parasch, A.; Williams, S.; Li, J.; Ma, H.; Burken, J.; Wang, Y. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. Int. J. Hyg. Environ. 2020, 229, 113582. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liao, L.; Xiao, W.; Yu, X.; Wang, H.; Wang, Q.; Lin, Y.L.; Kilinc-Balci, F.S.; Price, A.; Chu, L.; et al. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett. 2020, 20, 5544–5552. [Google Scholar] [CrossRef]
- Ayodeji, O.J.; Hilliard, T.A.; Ramkumar, S. Particle-size-dependent filtration efficiency, breathability, and flow resistance of face coverings and common household fabrics used for face masks during the covid-19 pandemic. Int. J. Environ. Res. 2022, 16, 11. [Google Scholar] [CrossRef]
- Konda, A.; Prakash, A.; Moss, G.A.; Schmoldt, M.; Grant, G.D.; Guha, S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 2020, 14, 6339–6347. [Google Scholar] [CrossRef]
- Li, Y.; Leung, P.; Yao, L.; Song, Q.W.; Newton, E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 2006, 62, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kharaghani, D.; Khan, M.Q.; Shahzad, A.; Inoue, Y.; Yamamoto, T.; Rozet, S.; Tamada, Y.; Kim, I.S. Preparation and in-vitro assessment of hierarchal organized antibacterial breath mask based on polyacrylonitrile/silver (PAN/AgNPs) nanofiber. Nanomaterials 2018, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.S.; Park, Y.I.; Park, H.; Nam, S.E.; Kim, I.C.; Kwon, Y.N. Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks. Environ. Technol. Innov. 2020, 20, 101093. [Google Scholar] [CrossRef]
- Han, M.C.; Cai, S.Z.; Wang, J.; He, H.W. Single-side superhydrophobicity in Si3N4-doped and SiO2-treated polypropylene nonwoven webs with antibacterial activity. Polymers 2022, 14, 2952. [Google Scholar] [CrossRef]
- McQuerry, M.; Dodson, A. An antimicrobial zinc ion fiber for COVID-19 prevention in nonwoven face coverings for healthcare settings. J. Occup. Environ. Hyg. 2024, 1–8. [Google Scholar] [CrossRef]
- Calais, G.B.; Rocha Neto, J.B.M.; Bataglioli, R.A.; Chevalier, P.; Tsukamoto, J.; Arns, C.W.; Mantovani, D.; Beppu, M.M. Bioactive textile coatings for improved viral protection: A study of polypropylene masks coated with copper salt and organic antimicrobial agents. Appl. Surf. Sci. 2023, 638, 158112. [Google Scholar] [CrossRef]
- SadrHaghighi, A.; Sarvari, R.; Fakhri, E.; Poortahmasebi, V.; Sedighnia, N.; Torabi, M.; Mohammadzadeh, M.; Azhiri, A.H.; Eskandarinezhad, M.; Moharamzadeh, K.; et al. Copper-Nanoparticle-Coated Melt-Blown Facemask Filter with Antibacterial and SARS-CoV-2 Antiviral Ability. ACS Appl. Nano Mater. 2023, 6, 12849–12861. [Google Scholar] [CrossRef]
- Punjabi, K.; Bhatia, E.; Keshari, R.; Jadhav, K.; Singh, S.; Shastri, J.; Banerjee, R. Biopolymer Coating Imparts Sustainable Self-Disinfecting and Antimicrobial Properties to Fabric: Translated to Protective Gears for the Pandemic and Beyond. ACS Biomater. Sci. Eng. 2023, 9, 1116–1131. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, R.-C. Facile and eco-friendly fabrication of colored and bioactive silk materials using silver nanoparticles synthesized by two flavonoids. Polymers 2018, 10, 404. [Google Scholar] [CrossRef]
- Brahmachari, G.; Sarkar, S.; Ghosh, R.; Barman, S.; Mandal, N.C.; Jash, S.K.; Banerjee, B.; Roy, R. Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Bioorganic Med. Chem. Lett. 2014, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Nakkala, J.R.; Mata, R.; Bhagat, E.; Sadras, S.R. Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: Study of antioxidant and anticancer activities. J. Nanopart. Res. 2015, 17, 151. [Google Scholar] [CrossRef]
- Labh, A.K.; Rajeshkumar, S.; Lakshmi, T.; Roy, A. Antibacterial efficacy of silver nanoparticles synthesized using herbal formulation against clinical pathogens. Drug Invent. Today 2019, 11, 2362. [Google Scholar]
- Kibria, M.G.; Chowdhury, K.P.; Ashik, A.H.; Riyad, M.E.H. Wound healing functionality of mangosteen extracts on viscose fabric. Text. Leather Rev. 2022, 5, 147–164. [Google Scholar] [CrossRef]
- Maghimaa, M.; Alharbi, S.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. [Google Scholar] [CrossRef] [PubMed]
- Senthamarai Kannan, M.; Hari Haran, P.S.; Sundar, K.; Kunjiappan, S.; Balakrishnan, V. Fabrication of anti-bacterial cotton bandage using biologically synthesized nanoparticles for medical applications. Prog. Biomater. 2022, 11, 229–241. [Google Scholar] [CrossRef]
- Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Sule, A.; Ahmed, Q.U.; Latip, J.; Samah, O.A.; Omar, M.N.; Umar, A.; Dogarai, B.B.S. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharm. Biol. 2012, 50, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol. 2019, 103, 881–891. [Google Scholar] [CrossRef]
- Banerjee, M.; Parai, D.; Chattopadhyay, S.; Mukherjee, S.K. Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol. 2017, 62, 237–244. [Google Scholar] [CrossRef]
- Banerjee, M.; Moulick, S.; Bhattacharya, K.K.; Parai, D.; Chattopadhyay, S.; Mukherjee, S.K. Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb. Pathog. 2017, 113, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-X.; Xue, H.-J.; Ye, W.-C.; Fang, B.-H.; Liu, Y.-H.; Yuan, S.-H.; Yu, P.; Wang, Y.-Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull. 2009, 32, 1385–1391. [Google Scholar] [CrossRef]
- Abass, S.; Zahiruddin, S.; Ali, A.; Irfan, M.; Jan, B.; Haq, Q.M.R.; Husain, S.A.; Ahmad, S. Development of synergy-based combination of methanolic extract of Andrographis paniculata and Berberis aristata against E. coli and S. aureus. Curr. Microbiol. 2022, 79, 223. [Google Scholar] [CrossRef] [PubMed]
- Kongcharoensuntorn, W.; Kuawaiyakul, K.; Thongsri, S. Synergistic Effect of Andrographis paniculata with Medicinal Plants to Inhibit the Growth of Opportunistic Bacteria. Burapha Sci. J. 2023, 28, 789–808. [Google Scholar]
- Liu, X.; Souzandeh, H.; Zheng, Y.; Xie, Y.; Zhong, W.-H.; Wang, C. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos. Sci. Technol. 2017, 138, 124–133. [Google Scholar] [CrossRef]
- Wu, A.; Hu, X.; Ao, H.; Chen, Z.; Chu, Z.; Jiang, T.; Deng, X.; Wan, Y. Rational design of bacterial cellulose-based air filter with antibacterial activity for highly efficient particulate matters removal. Nano Sel. 2022, 3, 201–211. [Google Scholar] [CrossRef]
- Valdez-Salas, B.; Beltran-Partida, E.; Cheng, N.; Salvador-Carlos, J.; Valdez-Salas, E.A.; Curiel-Alvarez, M.; Ibarra-Wiley, R. Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. Int. J. Nanomed. 2021, 16, 2689–2702. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Ogulata, R.T.; Sezgin Bozok, S. Silver nanoparticles against SARS-CoV-2 and its potential application in medical protective clothing—A review. J. Text. Inst. 2022, 113, 2825–2838. [Google Scholar] [CrossRef]
- Pradipasena, P.; Chollakup, R.; Tantratian, S. Formation and characterization of BC and BC-paper pulp films for packaging application. J. Thermoplast. Compos. Mater. 2018, 31, 500–513. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Basri, D.F.; Fan, S. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J. Pharmacol. 2005, 37, 26. [Google Scholar] [CrossRef]
- Davidson, P.M.; Taylor, T.M.; Schmidt, S.E. Chemical preservatives and natural antimicrobial compounds. In Food Microbiology: Fundamentals and Frontiers; Michael, P., Doyle, R.L.B., Eds.; ASM Press: Washington, DC, USA, 2012; pp. 765–801. [Google Scholar]
- Nishi, Y.; Uryu, M.; Yamanaka, S.; Watanabe, K.; Kitamura, N.; Iguchi, M.; Mitsuhashi, S. The structure and mechanical properties of sheets prepared from bacterial cellulose: Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J. Mater. Sci. 1990, 25, 2997–3001. [Google Scholar] [CrossRef]
- Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 2000, 35, 261–270. [Google Scholar] [CrossRef]
- Tabarsa, T.; Sheykhnazari, S.; Ashori, A.; Mashkour, M.; Khazaeian, A. Preparation and characterization of reinforced papers using nano bacterial cellulose. Int. J. Biol. Macromol. 2017, 101, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, T.; Huang, X.; Wei, W. Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 2016, 11, 9290–9301. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhang, J.; Liu, Q.; Chen, Y.; Li, J.; Lu, F. Improved dispersion of bacterial cellulose fibers for the reinforcement of paper made from recycled fibers. Nanomaterials 2019, 9, 58. [Google Scholar] [CrossRef]
- Qing, Y.a.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef]
- Klueh, U.; Wagner, V.; Kelly, S.; Johnson, A.; Bryers, J. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res. 2000, 53, 621–631. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Skrzypczak, D.; Mikula, K.; Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Foods 2020, 73, 104146. [Google Scholar] [CrossRef] [PubMed]
- Ervina, M.; Pratama, M.R.F.; Poerwono, H.; Siswodihardjo, S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f) Ness. J. Adv. Pharm. Technol. Res. 2020, 11, 157–162. [Google Scholar] [CrossRef]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Khanoonkon, N.; Rugthaworn, P.; Kongsin, K.; Sukyai, P.; Harnkarnsujarit, N.; Sothornvit, R.; Chollakup, R.; Sukatta, U. Enhanced antimicrobial effectiveness of synergistic mixtures of rambutan peel extract and cinnamon essential oil on food spoilage bacteria and bio-based food packaging. J. Food Saf. 2022, 42, e12976. [Google Scholar] [CrossRef]
- Punjabi, K.; Mehta, S.; Chavan, R.; Chitalia, V.; Deogharkar, D.; Deshpande, S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol. 2018, 9, 2207. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; He, J.; Dong, X. Effect of AgNP distribution on the cotton fiber on the durability of antibacterial cotton fabrics. Cellulose 2021, 28, 9489–9504. [Google Scholar] [CrossRef]
- Fouda, A.; Shaheen, T.I. Silver Nanoparticles: Biosynthesis, Characterization and Application on Cotton Fabrics. Microbiol. Res. J. Int. 2017, 20, 1–14. [Google Scholar] [CrossRef]
- Andra, S.; Balu, S.k.; Jeevanandam, J.; Muthalagu, M.; Danquah, M.K. Surface cationization of cellulose to enhance durable antibacterial finish in phytosynthesized silver nanoparticle treated cotton fabric. Cellulose 2021, 28, 5895–5910. [Google Scholar] [CrossRef]
- Wang, A.-B.; Zhang, X.; Gao, L.-J.; Zhang, T.; Xu, H.-J.; Bi, Y.-J. A review of filtration performance of protective masks. Int. J. Environ. Res. Public Health 2023, 20, 2346. [Google Scholar] [CrossRef] [PubMed]
- Skaria, S.D.; Smaldone, G.C. Respiratory Source Control Using Surgical Masks with Nanofiber Media. Ann. Occup. Hyg. 2014, 58, 771–781. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, C.R.; Seale, H.; Dung, T.C.; Hien, N.T.; Nga, P.T.; Chughtai, A.A.; Rahman, B.; Dwyer, D.E.; Wang, Q. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. BMJ Open 2015, 5, e006577. [Google Scholar] [CrossRef] [PubMed]
Property | Fluorocarbon-Treated Eri Silk | |
---|---|---|
Oil repellency (seconds) | Vegetable oil | 300 |
Paraffin oil | 300 | |
n-Heptane | 60 | |
Stain release rating | 4 |
% Nata de Coco by Weight | 0 | 5 | 10 | 50 | 100 |
---|---|---|---|---|---|
Basis weight (g/m2) | 52.27 ± 0.82 | 53.73 ± 2.99 | 55.98 ± 1.56 | 51.84 ± 1.22 | 51.27 ± 3.78 |
Tensile index (N·m/g) | 6.09 ± 0.32 | 11.40 ± 0.00 | 17.27 ± 0.00 | 51.30 ± 0.64 | 63.57 ± 3.33 |
Tear index (mN·m2/g) | 0 | ND | 3.72 ± 0.26 | 5.49 ± 0.56 | 3.61 ± 0.00 |
Cobb test (g/m2) | 56.62 ± 0.97 | 68.97 ± 0.62 | 66.52 ± 3.26 | 29.06 ± 2.02 | 19.57 ± 2.68 |
Air permeability (cm3/cm2/s) | 7.90 ± 1.20 | 1.95 ± 0.04 | 0.44 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Samples | S. aureus DMST 8840 | E. coli TISTR 117 | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
AgNPs | 39.06 | 156.25 | 156.25 | 156.25 |
AG | 1250.00 | 2500.00 | 1250.00 | 2500.00 |
AgNPs+AG | 39.06 | 78.13 | 78.13 | 78.13 |
Ratio | FICindex | ||
---|---|---|---|
AgNO | Andrographis paniculata Extract | S. aureus | E. coli |
10 | 0 | 1.000 | 1.000 |
5 | 5 | 0.516 | 0.281 |
0 | 10 | 1.000 | 1.000 |
Samples | S. aureus | E. coli | ||||
---|---|---|---|---|---|---|
Bacteria Count (CFU/mL) | % R | Bacteria Count (CFU/mL) | % R | |||
0 h | 18 h | 0 h | 18 h | |||
Unwashed | 1.91 × 106 | <100 | 100 | 6.77 × 105 | <100 | 100 |
After 20 washing cycles | 1.91 × 106 | <100 | 100 | 6.77 × 105 | <100 | 100 |
After 30 washing cycles | 1.91 × 106 | 3.05 × 106 | 0.00 | 6.77 × 105 | 8.53 × 103 | 98.74 |
Samples | Silver (% Weight) | % Reduction after Washing |
---|---|---|
Unwashed | 3.70 | 0 |
After 20 washing cycles | 2.48 | 32.97 |
After 30 washing cycles | 1.63 | 55.95 |
ASTM F3502–2021 (Level l) | Criterion | Result |
---|---|---|
Sub-micron particulate filtration efficiency (%) | ≥20% | 35.5% |
Airflow resistance (mm H2O) | ≤15 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phromphen, P.; Phoophat, P.; Sukatta, U.; Rugthaworn, P.; Rungruangkitkrai, N.; Tuntariyanond, P.; Chartvivatpornchai, N.; Sichola, P.; Boonyarit, J.; Apipatpapha, T.; et al. Enhancement of Antibacterial Silk Face Covering with the Biosynthesis of Silver Nanoparticles from Garcinia mangostana Linn. Peel and Andrographis paniculata Extract and a Bacterial Cellulose Filter. Coatings 2024, 14, 379. https://doi.org/10.3390/coatings14040379
Phromphen P, Phoophat P, Sukatta U, Rugthaworn P, Rungruangkitkrai N, Tuntariyanond P, Chartvivatpornchai N, Sichola P, Boonyarit J, Apipatpapha T, et al. Enhancement of Antibacterial Silk Face Covering with the Biosynthesis of Silver Nanoparticles from Garcinia mangostana Linn. Peel and Andrographis paniculata Extract and a Bacterial Cellulose Filter. Coatings. 2024; 14(4):379. https://doi.org/10.3390/coatings14040379
Chicago/Turabian StylePhromphen, Phannaphat, Pithalai Phoophat, Udomlak Sukatta, Prapassorn Rugthaworn, Nattadon Rungruangkitkrai, Pawarin Tuntariyanond, Nawarat Chartvivatpornchai, Preeyanuch Sichola, Jirachaya Boonyarit, Thanyachol Apipatpapha, and et al. 2024. "Enhancement of Antibacterial Silk Face Covering with the Biosynthesis of Silver Nanoparticles from Garcinia mangostana Linn. Peel and Andrographis paniculata Extract and a Bacterial Cellulose Filter" Coatings 14, no. 4: 379. https://doi.org/10.3390/coatings14040379
APA StylePhromphen, P., Phoophat, P., Sukatta, U., Rugthaworn, P., Rungruangkitkrai, N., Tuntariyanond, P., Chartvivatpornchai, N., Sichola, P., Boonyarit, J., Apipatpapha, T., & Chollakup, R. (2024). Enhancement of Antibacterial Silk Face Covering with the Biosynthesis of Silver Nanoparticles from Garcinia mangostana Linn. Peel and Andrographis paniculata Extract and a Bacterial Cellulose Filter. Coatings, 14(4), 379. https://doi.org/10.3390/coatings14040379