Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Cultivation
2.2. Visualisation and Identification of Fungal Macro- and Micromorphological Features
2.3. Molecular Identification
3. Results
3.1. Weather Data
3.2. Culturable Fungal Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rensink, S.; Van Nieuwenhuijzen, E.J.; Sailer, M.F.; Struck, C.; Wösten, H.A.B. Use of Aureobasidium in a Sustainable Economy. Appl. Microbiol. Biotechnol. 2024, 108, 202. [Google Scholar] [CrossRef] [PubMed]
- Bozoudi, D.; Tsaltas, D. The Multiple and Versatile Roles of Aureobasidium pullulans in the Vitivinicultural Sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The Current Status of Aureobasidium pullulans in Biotechnology. Folia Microbiol. 2018, 63, 129–140. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: New York, NY, USA, 2005; ISBN 9781439853818. [Google Scholar]
- Schmidt, O. Wood and Tree Fungi; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; ISBN 9783540321385. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 53, ISBN 9788578110796. [Google Scholar]
- Sailer, M.F.; van Nieuwenhuijzen, E.J.; Knol, W. Forming of a Functional Biofilm on Wood Surfaces. Ecol. Eng. 2010, 36, 163–167. [Google Scholar] [CrossRef]
- Knörr, W.; Daute, P.; Grützmacher, R.; Höfer, R. Development of New Fields of Application for Linseed Oil. In Proceedings of the Congress of 2nd EUROLIPID and 50th DGF-Conference, Münster, Germany, 26–28 September 1994. [Google Scholar]
- Terziev, N.; Panov, D. Plant Oils As “Green” Substances for Wood Protection. In Proceedings of the 4th International Conference on Environmentally-Compatible Forest Products, Porto, Portugal, 8–10 September 2010; pp. 143–149. [Google Scholar]
- Ozgenc, O.; Okan, O.T.; Yildiz, U.C.; Deniz, I. Wood Surface Protection against Artificial Weathering with Vegetable Seed Oils. BioResources 2013, 8, 6242–6262. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Xu, G.; Tu, X.W.; Liu, X.Y.; Wu, Z. Efficacy of Linseed Oil-Treated Wood to Improve Hydrophobicity, Dimensional Stability, and Thermostability. Wood Res. 2021, 66, 777–788. [Google Scholar] [CrossRef]
- Poohphajai, F.; Sandak, J.; Sailer, M.; Rautkari, L.; Belt, T.; Sandak, A. Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering. Coatings 2021, 11, 701. [Google Scholar] [CrossRef]
- Filippovych, K.; Huinink, H.; van der Ven, L.; Adan, O.C.G. Self Healing Biofilms for Wood Protection. In Self Healing Materials—Pioneering Research in the Netherlands; van der Zwaag, S., Brinkman, E., Eds.; IOS Press: Amsterdam, The Netherlands, 2015; pp. 181–185. ISBN 798-1-61499-514-2-181. [Google Scholar]
- Filippovych, K.; Huinink, H.; van der Ven, L.; Adan, O.C.G. Dynamics of Biofilm Formation on Wood Impregnated with Vegetable Oils. In Proceedings of the International Research Group on Wood Protection (IRG-WP), Lisbon, Portugal, 15–19 May 2016; IRG/WP 16–40769. p. 14. [Google Scholar]
- van Nieuwenhuijzen, E.J.; Sailer, M.F.; Gobakken, L.R.; Adan, O.C.G.; Punt, P.J.; Samson, R.A. Detection of Outdoor Mould Staining as Biofinish on Oil Treated Wood. Int. Biodeterior. Biodegrad. 2015, 105, 215–227. [Google Scholar] [CrossRef]
- van Nieuwenhuijzen, E.J.; Houbraken, J.A.M.P.; Punt, P.J.; Roeselers, G.; Adan, O.C.G.; Samson, R.A. The Fungal Composition of Natural Biofinishes on Oil-Treated Wood. Fungal Biol. Biotechnol. 2017, 4, 2. [Google Scholar] [CrossRef]
- Peeters, L.H.M.; Huinink, H.P.; Voogt, B.; Adan, O.C.G. Oil Type and Cross-Linking Influence Growth of Aureobasidium melanogenum on Vegetable Oils as a Single Carbon Source. MicrobiologyOpen 2018, 7, e00605. [Google Scholar] [CrossRef]
- Gerrits Van Den Ende, A.H.G.; De Hoog, G.S. Variability and Molecular Diagnostics of the Neurotropic Species Cladophialophora bantiana. Stud. Mycol. 1999, 43, 151–162. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. In PCR Protocols; Innis, M.A., Sninsky, J.J., Gelfand, D.H., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Snyder, A.B. Thermoresistance in Black Yeasts Is Associated with Halosensitivity and High Pressure Processing Tolerance but Not with UV Tolerance or Sanitizer Tolerance. J. Food Prot. 2022, 85, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Campana, R.; Fanelli, F.; Sisti, M. Role of Melanin in the Black Yeast Fungi Aureobasidium pullulans and Zalaria obscura in Promoting Tolerance to Environmental Stresses and to Antimicrobial Compounds. Fungal Biol. 2022, 126, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Zalar, P.; Gostinčar, C.; de Hoog, G.S.; Uršič, V.; Sudhadham, M.; Gunde-Cimerman, N. Redefinition of Aureobasidium pullulans and Its Varieties. Stud. Mycol. 2008, 61, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Branda, E.; Turchetti, B.; Diolaiuti, G.; Pecci, M.; Smiraglia, C.; Buzzini, P. Yeast and Yeast-like Diversity in the Southernmost Glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol. Ecol. 2010, 72, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.B.M.; Rosa, L.H.; Vieira, M.L.A.; de Garcia, V.; Brandão, L.R.; Teixeira, L.C.R.S.; Moliné, M.; Libkind, D.; van Broock, M.; Rosa, C.A. The Diversity, Extracellular Enzymatic Activities and Photoprotective Compounds of Yeasts Isolated in Antarctica. Brazilian J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- D’Elia, T.; Veerapaneni, R.; Theraisnathan, V.; Rogers, S.O. Isolation of Fungi from Lake Vostok Accretion Ice. Mycologia 2009, 101, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.S.; Chen, R.Y.; Cheng, T.L.; Fang, W.T.; Hsu, C.H.; Chou, J.Y. Phenotypic Plasticity in Aureobasidium pullulans Isolates. Int. J. Agric. Biol. 2019, 22, 167–177. [Google Scholar] [CrossRef]
- Slepecky, R.A.; Starmer, W.T. Phenotypic Plasticity in Fungi: A Review with Observations on Aureobasidium pullulans. Mycologia 2009, 101, 823–832. [Google Scholar] [CrossRef]
- Gostinčar, C.; Ohm, R.A.; Kogej, T.; Sonjak, S.; Turk, M.; Zajc, J.; Zalar, P.; Grube, M.; Sun, H.; Han, J.; et al. Genome Sequencing of Four Aureobasidium pullulans Varieties: Biotechnological Potential, Stress Tolerance, and Description of New Species. BMC Genom. 2014, 15, 549. [Google Scholar] [CrossRef] [PubMed]
- Zajc, J.; Černoša, A.; Di Francesco, A.; Castoria, R.; De Curtis, F.; Lima, G.; Badri, H.; Jijakli, H.; Ippolito, A.; Gostinčar, C.; et al. Characterization of Aureobasidium pullulans Isolates Selected as Biocontrol Agents against Fruit Decay Pathogens. Fungal Genom. Biol. 2020, 10, 163. [Google Scholar] [CrossRef]
- Andrews, J.H.; Harris, R.F.; Spear, R.N.; Lau, G.W.; Nordheim, E.V. Morphogenesis and Adhesion of Aureobasidium pullulans. Can. J. Microbiol. 1994, 40, 6–17. [Google Scholar] [CrossRef]
- Gunasekera, T.S.; Paul, N.D.; Ayres, P.G. The Effects of Ultraviolet-U (UV-B: 290-320 Nm) Radiation on Blister Blight Disease of Tea (Camellia sinensis). Plant Pathol. 1997, 46, 179–185. [Google Scholar] [CrossRef]
- Newsham, K.K.; Anderson, J.M.; Sparks, T.H.; Splatt, P.; Woods, C.; Mcleod, A.R. UV-B Effect on Quercus robur Leaf Litter Decomposition Persits over Four Years. Glob. Chang. Biol. 2001, 7, 479–483. [Google Scholar] [CrossRef]
- Rotem, J. The Role of Solar Radiation, Especially Ultraviolet, in the Mortality of Fungal Spores. Phytopathology 1985, 75, 510. [Google Scholar] [CrossRef]
- Gessler, N.N.; Egorova, A.S.; Belozerskaya, T.A. Melanin Pigments of Fungi under Extreme Environmental Conditions (Review). Appl. Biochem. Microbiol. 2014, 50, 105–113. [Google Scholar] [CrossRef]
- Casadevall, A.; Cordero, R.J.B.; Bryan, R.; Nosanchuk, J.; Dadachova, E. Melanin, Radiation, and Energy Transduction in Fungi. Microbiol. Spectr. 2017, 5, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Koyamatsu, Y.; Shiota, A.; Mitani, Y.; Qudaih, Y.S.; Fuji, K. An Index to Evaluate the Amount of the Solar Radiation for a Surface with Eight Directions. Int. J. Smart Grid Clean Energy 2015, 4, 241–246. [Google Scholar] [CrossRef]
- Li, D.H.W.; Aghimien, E.I.; Alshaibani, K. An Analysis of Real-Time Measured Solar Radiation and Daylight and Its Energy Implications for Semi-Transparent Building-Integrated Photovoltaic Façades. Buildings 2023, 13, 386. [Google Scholar] [CrossRef]
- Allen, M.F.; Hipps, L.E.; Wooldridge, G.L. Wind Dispersal and Subsequent Establishment of VA Mycorrhizal Fungi across a Successional Arid Landscape. Landsc. Ecol. 1989, 2, 165–171. [Google Scholar] [CrossRef]
- Almaguer, M.; Aira, M.J.; Rodríguez-Rajo, F.J.; Rojas, T.I. Temporal Dynamics of Airborne Fungi in Havana (Cuba) during Dry and Rainy Seasons: Influence of Meteorological Parameters. Int. J. Biometeorol. 2014, 58, 1459–1470. [Google Scholar] [CrossRef]
- Di Francesco, A.; Di Foggia, M.; Zajc, J.; Gunde-Cimerman, N.; Baraldi, E. Study of the Efficacy of Aureobasidium Strains Belonging to Three Different Species: A. pullulans, A. subglaciale and A. melanogenum against Botrytis cinerea of Tomato. Ann. Appl. Biol. 2020, 177, 266–275. [Google Scholar] [CrossRef]
- Schena, L.; Ippolito, A.; Zahavi, T.; Cohen, L.; Nigro, F.; Droby, S. Genetic Diversity and Biocontrol Activity of Aureobasidium pullulans Isolates against Postharvest Rots. Postharvest Biol. Technol. 1999, 17, 189–199. [Google Scholar] [CrossRef]
- Castoria, R.; De Curtis, F.; Lima, G.; Caputo, L.; Pacifico, S.; De Cicco, V. Aureobasidium pullulans (LS-30) an Antagonist of Postharvest Pathogens of Fruits: Study on Its Modes of Action. Postharvest Biol. Technol. 2001, 22, 7–17. [Google Scholar] [CrossRef]
- Yalage Don, S.M.; Schmidtke, L.M.; Gambetta, J.M.; Steel, C.C. Volatile Organic Compounds Produced by Aureobasidium pullulans Induce Electrolyte Loss and Oxidative Stress in Botrytis cinerea and Alternaria alternata. Res. Microbiol. 2021, 172, 103788. [Google Scholar] [CrossRef]
- Poohphajai, F.; Myronycheva, O.; Karlsson, O.; Belt, T.; Rautkari, L.; Sandak, J.; Gubenšek, A.; Zalar, P.; Gunde-Cimerman, N.; Sandak, A. Fungal Colonisation on Wood Surfaces Weathered at Diverse Climatic Conditions. Heliyon 2023, 9, e17355. [Google Scholar] [CrossRef] [PubMed]
- Sailer, M. A Protective Biofilm for Wood Preservation. Available online: https://www.xyhlo.com/wp-content/uploads/3.8-004-Regge-Hout-fact-sheet-pilot_def.pdf (accessed on 13 March 2024).
- Straube, J.; Straube, J.F.; Burnett, E.F.P. Simplified Prediction of Driving Rain on Buildings, International Building Physics Conference Simplified Prediction of Driving Rain on Buildings. In Proceedings of the International Building Physics Conference, Eindhoven, The Netherlands, 18–21 September 2000. [Google Scholar]
- Poohphajai, F.; Gubenšek, A.; Černoša, A.; Butina Ogorelec, K.; Rautkari, L.; Sandak, J.; Sandak, A. Raw Data for Publication: Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life. Zenodo 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poohphajai, F.; Gubenšek, A.; Černoša, A.; Butina Ogorelec, K.; Rautkari, L.; Sandak, J.; Sandak, A. Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life. Coatings 2024, 14, 430. https://doi.org/10.3390/coatings14040430
Poohphajai F, Gubenšek A, Černoša A, Butina Ogorelec K, Rautkari L, Sandak J, Sandak A. Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life. Coatings. 2024; 14(4):430. https://doi.org/10.3390/coatings14040430
Chicago/Turabian StylePoohphajai, Faksawat, Ana Gubenšek, Anja Černoša, Karen Butina Ogorelec, Lauri Rautkari, Jakub Sandak, and Anna Sandak. 2024. "Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life" Coatings 14, no. 4: 430. https://doi.org/10.3390/coatings14040430
APA StylePoohphajai, F., Gubenšek, A., Černoša, A., Butina Ogorelec, K., Rautkari, L., Sandak, J., & Sandak, A. (2024). Bioinspired Living Coating System for Wood Protection: Exploring Fungal Species on Wood Surfaces Coated with Biofinish during Its Service Life. Coatings, 14(4), 430. https://doi.org/10.3390/coatings14040430