Direct Jet Co-Electrospinning of Spinal Cord-Mimicking Phantom for Diffusion Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Shell and Core Polymer Solutions for DJ-co-ES
2.3. Direct Jet Co-Electrospinning of Polymer Solutions
2.4. Microstructural Characterization
2.5. Phantom Construction
2.6. MR Acquisition and Analysis
3. Results and Discussion
3.1. The Effect of Core Solution Concentration on the Fluid Jet and the Fibers
3.2. Effect of Solvent Miscibility in the Core and Shell Solutions
3.3. The Effect of Flow Rate of the Core and Shell Solutions
3.4. MR Imaging of Spinal Cord-Mimicking Phantoms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bican, O.; Minagar, A.; Pruitt, A.A. The spinal cord: A review of functional neuroanatomy. Neurol. Clin. 2013, 31, 1–18. [Google Scholar] [CrossRef]
- Duval, T.; Saliani, A.; Nami, H.; Nanci, A.; Stikov, N.; Leblond, H.; Cohen-Adad, J. Axons morphometry in the human spinal cord. Neuroimage 2019, 185, 119–128. [Google Scholar] [CrossRef]
- Saliani, A.; Perraud, B.; Duval, T.; Stikov, N.; Rossignol, S.; Cohen-Adad, J. Axon and Myelin Morphology in Animal and Human Spinal Cord. Front. Neuroanat. 2017, 11, 129. [Google Scholar] [CrossRef]
- Perge, J.A.; Niven, J.E.; Mugnaini, E.; Balasubramanian, V.; Sterling, P. Why do axons differ in caliber? J. Neurosci. 2012, 32, 626–638. [Google Scholar] [CrossRef]
- David, G.; Pfyffer, D.; Vallotton, K.; Pfender, N.; Thompson, A.; Weiskopf, N.; Mohammadi, S.; Curt, A.; Freund, P. Longitudinal changes of spinal cord grey and white matter following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1222–1230. [Google Scholar] [CrossRef]
- Moccia, M.; Ruggieri, S.; Ianniello, A.; Toosy, A.; Pozzilli, C.; Ciccarelli, O. Advances in spinal cord imaging in multiple sclerosis. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419840593. [Google Scholar] [CrossRef]
- Trevarrow, M.P.; Baker, S.E.; Wilson, T.W.; Kurz, M.J. Microstructural changes in the spinal cord of adults with cerebral palsy. Dev. Med. Child. Neurol. 2021, 63, 998–1003. [Google Scholar] [CrossRef]
- Novikov, D.S. The present and the future of microstructure MRI: From a paradigm shift to normal science. J. Neurosci. Meth 2021, 351, 108947. [Google Scholar] [CrossRef]
- Afzali, M.; Pieciak, T.; Newman, S.; Garyfallidis, E.; Ozarslan, E.; Cheng, H.; Jones, D.K. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J. Neurosci. Methods 2021, 347, 108951. [Google Scholar] [CrossRef]
- Drobnjak, I.; Neher, P.; Poupon, C.; Sarwar, T. Physical and digital phantoms for validating tractography and assessing artifacts. Neuroimage 2021, 245, 118704. [Google Scholar] [CrossRef]
- Freund, P.; Seif, M.; Weiskopf, N.; Friston, K.; Fehlings, M.G.; Thompson, A.J.; Curt, A. MRI in traumatic spinal cord injury: From clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019, 18, 1123–1135. [Google Scholar] [CrossRef]
- Martin, M.L.; Connolly, M.J.; DelRio, F.W.; Slifka, A.J. Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl. Phys. Rev. 2020, 7, 041302. [Google Scholar] [CrossRef]
- Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 2018, 30, e1704765. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. Chempluschem 2019, 84, 1453–1497. [Google Scholar] [CrossRef]
- Morelli, S.; Piscioneri, A.; Salerno, S.; De Bartolo, L. Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering. Cells Tissues Organs 2021, 211, 447–476. [Google Scholar] [CrossRef]
- Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. [Google Scholar] [CrossRef]
- Zhou, F.L.; Parker, G.J.; Eichhorn, S.J.; Hubbard Cristinacce, P.L. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies. Mater. Charact. 2015, 109, 25–35. [Google Scholar] [CrossRef]
- Dror, Y.; Salalha, W.; Avrahami, R.; Zussman, E.; Yarin, A.L.; Dersch, R.; Greiner, A.; Wendorff, J.H. One-step production of polymeric microtubes by co-electrospinning. Small 2007, 3, 1064–1073. [Google Scholar] [CrossRef]
- Zhou, F.L.; Li, Z.; Gough, J.E.; Hubbard Cristinacce, P.L.; Parker, G.J.M. Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Mater. Des. 2018, 137, 394–403. [Google Scholar] [CrossRef]
- Mohammadi, S.; Callaghan, M.F. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J. Neurosci. Methods 2021, 348, 108990. [Google Scholar] [CrossRef]
- Duval, T.; Levy, S.; Stikov, N.; Campbell, J.; Mezer, A.; Witzel, T.; Keil, B.; Smith, V.; Wald, L.L.; Klawiter, E.; et al. g-Ratio weighted imaging of the human spinal cord in vivo. Neuroimage 2017, 145, 11–23. [Google Scholar] [CrossRef]
- Horsfield, M.A.; Jones, D.K. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR Biomed. 2002, 15, 570–577. [Google Scholar] [CrossRef]
- McCann, J.T.; Li, D.; Xia, Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 2005, 15. [Google Scholar] [CrossRef]
- Zhou, F.L.; Chirazi, A.; Gough, J.E.; Hubbard Cristinacce, P.L.; Parker, G.J.M. Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying. Langmuir 2017, 33, 13262–13271. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, N.; Di, J.C.; Zhao, Y.; Song, Y.L.; Jiang, L. Nanowire-in-Microtube Structured Core/Shell Fibers via Multifluidic Coaxial Electrospinning. Langmuir 2010, 26, 11291–11296. [Google Scholar] [CrossRef]
- Ji, X.Y.; Wang, P.; Su, Z.G.; Ma, G.H.; Zhang, S.P. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: Redesign of artificial cells. J. Mater. Chem. B 2014, 2, 181–190. [Google Scholar] [CrossRef]
- Loscertales, I.G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Ganan-Calvo, A.M. Micro/nano encapsulation via electrified coaxial liquid jets. Science 2002, 295, 1695–1698. [Google Scholar] [CrossRef]
- Zhou, F.L.; Wu, H.; McHugh, D.J.; Wimpenny, I.; Zhang, X.; Gough, J.E.; Hubbard Cristinacce, P.L.; Parker, G.J.M. Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 217–227. [Google Scholar] [CrossRef]
- Luo, C.J.; Edirisinghe, M. Core-Liquid-Induced Transition from Coaxial Electrospray to Electrospinning of Low-Viscosity Poly(lactide-co-glycolide) Sheath Solution. Macromolecules 2014, 47, 7930–7938. [Google Scholar] [CrossRef]
- Elahi, M.F.; Lu, W. Core-shell Fibers for Biomedical Applications—A Review. J. Bioeng. Biomed. Sci. 2013, 3, 1. [Google Scholar] [CrossRef]
- Zhang, L.L.; Huang, J.W.; Si, T.; Xu, R.X. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices 2012, 9, 595–612. [Google Scholar] [CrossRef]
- Moghe, A.K.; Gupta, B.S. Co-axial electrospinning for nanofiber structures: Preparation and applications. Polym. Rev. 2008, 48, 353–377. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef]
- Qin, X. Coaxial electrospinning of nanofibers. In Electrospun Nanofibers; Woodhead Publishing: Cambridge, UK, 2017; pp. 41–71. [Google Scholar]
- Sung, Y.K.; Ahn, B.W.; Kang, T.J. Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J. Magn. Magn. Mater. 2012, 324, 916–922. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Ghayour, H.; Ismail, A.F.; Nur, H.; Berto, F. Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. Materials 2020, 13, 2153. [Google Scholar] [CrossRef]
- Yan, E.; Fan, Y.; Sun, Z.; Gao, J.; Hao, X.; Pei, S.; Wang, C.; Sun, L.; Zhang, D. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 217–223. [Google Scholar] [CrossRef]
- Kearney, H.; Miller, D.H.; Ciccarelli, O. Spinal cord MRI in multiple sclerosis—Diagnostic, prognostic and clinical value. Nat. Rev. Neurol. 2015, 11, 327–338. [Google Scholar] [CrossRef]
- Zaninovich, O.A.; Avila, M.J.; Kay, M.; Becker, J.L.; Hurlbert, R.J.; Martirosyan, N.L. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: A systematic review. Neurosurg. Focus 2019, 46, E7. [Google Scholar] [CrossRef]
- Vedantam, A.; Eckardt, G.; Wang, M.C.; Schmit, B.D.; Kurpad, S.N. High Cervical Fractional Anisotropy as an Imaging Marker for Spinal Cord Injury. Neurosurgery 2014, 61, 167–170. [Google Scholar] [CrossRef]
- Noguerol, T.M.; Barousse, R.; Amrhein, T.J.; Royuela-del-Val, J.; Montesinos, P.; Luna, A. Optimizing Diffusion-Tensor Imaging Acquisition for Spinal Cord Assessment: Physical Basis and Technical Adjustments. Radiographics 2020, 40, 403–427. [Google Scholar] [CrossRef]
- Hsu, Y.; Chou, M.C.; Yeh, P.S.; Wu, T.C.; Ko, C.C.; Chen, T.Y. Magnetic-Resonance Diffusion-Tensor Tractography in the Diagnosis of Tumefactive Spinal-Cord Lesions in Neuromyelitis Optica. Diagnostics 2020, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Venton, J.; Bouyagoub, S.; Harris, P.J.; Phillips, G. Deriving Spinal Cord Permeability and Porosity Using Diffusion-Weighted MRI Data. In Poromechanics VI, Proceedings of the Sixth Biot Conference on Poromechanics, Paris, France, 9–13 July 2017; ACSE: Reston, VA, USA, 2017. [Google Scholar]
- Grussu, F.; Schneider, T.; Zhang, H.; Alexander, D.C.; Wheeler-Kingshott, C.A. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage 2015, 111, 590–601. [Google Scholar] [CrossRef] [PubMed]
Groups | Shell Solution | Core Solution | Shell Flow Rate (mL/h) | Core Flow Rate (mL/h) |
---|---|---|---|---|
Core solution concentration: | 10 w/v% PCL in DCM/DMF, (7/3, v/v) | 1.0 | 0.5 | |
1-A | 3 w/v% PEO/DIW | |||
1-B | 4 w/v% PEO/DIW | |||
1-C | 5 w/v% PEO/DIW | |||
Shell/core solvent miscibility: | 10 w/v% PCL in DCM/DMF, (7/3, v/v) | 1.0 | 0.5 | |
2-A | 4 w/v% PEO/DIW | |||
2-B | 4 w/v% PEO in DIW/EtOH (7/3, v/v) | |||
2-C | 4 w/v% PEO in DCM/DMF, 7/3, v/v | |||
Shell/core flow rate: | 10 w/v% PCL in DCM/DMF, (7/3, v/v) | |||
3-A | 2.4 | 0.8 | ||
3-B | 4 w/v% PEO/DIW | 1.6 | 0.8 | |
3-C | 1.0 | 0.8 | ||
3-D | 1.0 | 0.6 | ||
3-E | 1.6 | 0.4 |
Group | 1-A | 1-B | 1-C |
---|---|---|---|
Core solution concentration | 3 w/v% | 4 w/v% | 5 w/v% |
Outer diameter (mm) | 6.08 ± 1.34 | 6.22 ± 1.57 | 6.61 ± 1.98 |
Inner diameter (mm) | 5.34 ± 1.26 | 5.30 ± 1.02 | 4.99 ± 0.64 |
G-ratio | 0.83 ± 0.04 | 0.80 ± 0.04 | 0.85 ± 0.03 |
Wall thickness (mm) | 0.70 ± 0.24 | 0.46 ± 0.12 | 0.45 ± 0.10 |
Group | 2-A | 2-B | 2-C |
---|---|---|---|
Miscibility (shell–core) | Immiscible (DCM/DMF-DIW) | Partially miscible (DCM/DMF-DIW/EtOH) | Completely miscible (DCM/DMF-DCM/DMF) |
Outer diameter (µm) | 9.02 ± 2.57 | 7.08 ± 2.05 | 2.42 ± 0.63 |
Inner diameter (µm) | 5.22 ± 1.52 | 5.05 ± 0.79 | 0.71 ± 0.23 |
G-ratio | 0.68 ± 0.09 | 0.71 ± 0.07 | 0.29 ± 0.02 |
Wall thickness (mm) | 0.58 ± 0.14 | 0.56 ± 0.15 | 0.48 ± 0.12 |
Group | 3-A | 3-B | 3-C | 3-D | 3-E |
---|---|---|---|---|---|
Flow rate (shell: core, mL/h) | 2.4:0.8 | 1.6:0.8 | 1:0.8 | 1:0.6 | 1:0.4 |
Outer diameter (mm) | 7.31 ± 1.58 | 7.31 ± 2.53 | 7.85 ± 1.87 | 7.07 ± 1.97 | 7.41 ± 2.84 |
Inner diameter (mm) | 6.22 ± 0.78 | 5.67 ± 1.58 | 5.58 ± 1.20 | 5.51 ± 1.43 | 4.34 ± 1.40 |
G-ratio | 0.85 ± 0.05 | 0.77 ± 0.06 | 0.71 ± 0.06 | 0.78 ± 0.07 | 0.59 ± 0.05 |
Wall thickness (mm) | 0.47 ± 0.13 | 0.48 ± 0.14 | 0.45 ± 0.12 | 0.48 ± 0.10 | 0.64 ± 0.25 |
Area Fraction (%) | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Fiber wall fraction | 29.76% | 37.29% | 50.99% |
Intra-fiber porosity | 49.91% | 38.76% | 7.21% |
Inter-fiber porosity | 20.33% | 23.95% | 41.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xu, L.; Hu, C.; Zhang, Z.; Yang, D.; Chen, W.; Williams, G.; Parker, G.J.M.; Gao, F.; Zhou, F.-L. Direct Jet Co-Electrospinning of Spinal Cord-Mimicking Phantom for Diffusion Magnetic Resonance Imaging. Coatings 2024, 14, 520. https://doi.org/10.3390/coatings14050520
Li Q, Xu L, Hu C, Zhang Z, Yang D, Chen W, Williams G, Parker GJM, Gao F, Zhou F-L. Direct Jet Co-Electrospinning of Spinal Cord-Mimicking Phantom for Diffusion Magnetic Resonance Imaging. Coatings. 2024; 14(5):520. https://doi.org/10.3390/coatings14050520
Chicago/Turabian StyleLi, Qi, Longji Xu, Chunyan Hu, Ziwei Zhang, Daxiang Yang, Weibo Chen, Gareth Williams, Geoff J. M. Parker, Fei Gao, and Feng-Lei Zhou. 2024. "Direct Jet Co-Electrospinning of Spinal Cord-Mimicking Phantom for Diffusion Magnetic Resonance Imaging" Coatings 14, no. 5: 520. https://doi.org/10.3390/coatings14050520
APA StyleLi, Q., Xu, L., Hu, C., Zhang, Z., Yang, D., Chen, W., Williams, G., Parker, G. J. M., Gao, F., & Zhou, F. -L. (2024). Direct Jet Co-Electrospinning of Spinal Cord-Mimicking Phantom for Diffusion Magnetic Resonance Imaging. Coatings, 14(5), 520. https://doi.org/10.3390/coatings14050520