Development and Application of Intelligent Coating Technology: A Review
Abstract
:1. Introduction
2. Research Progress in Intelligent Coatings
2.1. Intelligent Superhydrophobic Coating
2.1.1. Research Progress
2.1.2. The Advantages and Challenges of Intelligent Superhydrophobic Coatings
2.2. Anticorrosion Intelligent Coating
2.2.1. Research Progress
2.2.2. The Advantages of Intelligent Anticorrosion Coatings
- Long-term protection of metal surfaces from corrosion: Anticorrosion coatings can provide long-term protection to metal surfaces, preventing them from being affected by chemical reactions such as corrosion and oxidation, extending the service life of facilities.
- Reducing maintenance costs: Due to the protective effect of anticorrosion coatings, the maintenance costs of metal facilities can be greatly reduced, while reducing environmental pollution and emissions.
- Favorable adhesion ability: The anticorrosion coating is tightly attached to the surface of the metal layer and not easily detached.
- Beautiful and durable: The anticorrosion coatings not only look beautiful but also have a certain degree of durability, which can withstand long-term use and physical impact.
- Environmentally friendly: Most anticorrosion coatings are non-toxic, odorless, and do not release harmful substances, with minimal impact on the environment.
2.2.3. Challenges of Intelligent Anticorrosion Coatings
- External factors such as impact and weather changes may cause coating damage, which requires regular inspection, repair, or replacement.
- Compared to other materials, the cost of anticorrosion coatings is higher, and painting requires professional skills and equipment.
- The construction of anticorrosion coatings is difficult and requires professional technology and equipment. Improper surface treatment can affect the anticorrosion effect.
- Some anticorrosion coatings have a shorter protection time and require frequent repainting or replacement.
- Affecting the thermal conductivity of metal surfaces: The thickness of anticorrosion coatings may affect the thermal conductivity characteristics of metals, which can have a negative impact on certain processes and equipment.
- It may have a certain impact on the environment during preparation and use.
2.3. Intelligent Antibacterial Coating
2.3.1. Research Progress
2.3.2. The Advantages of Intelligent Antibacterial Coatings
- Transparent, colorless, and odorless: Intelligent antibacterial coatings can be applied to various surfaces, such as glass, metal, ceramics, wood, concrete, paper, and clothing, without changing the appearance or odor of these items.
- Continuous sterilization function: Compared with traditional sterilization coatings, intelligent antibacterial coatings can effectively sterilize for at least 30 days, reducing the need for frequent disinfection.
- Preventing microbial growth: Antibacterial coatings can prevent the growth of bacteria, fungi, algae, and other microorganisms, making the surface an unfavorable environment for microbial survival.
- Reducing the use of cleaning agents and disinfectants: The use of antibacterial coatings can reduce the demand for irritating cleaning agents and disinfectants, thereby reducing their impact on the environment, especially in public places such as medical facilities.
- Cost-effectiveness: Antibacterial coatings help to reduce maintenance costs as they prevent issues such as dyeing, discoloration, and leakage, reducing the additional economic burden and labor required for item replacement.
- Extending product life: Microbial protection combined with maintenance of antibacterial coatings can extend the service life of items and prevent discoloration, odor, and other damage caused by microbial activity.
- Enhancing infrastructure value: The application of antibacterial coatings helps to protect surfaces and improve overall infrastructure standards, providing people with a safer and cleaner environment.
2.4. Other Intelligent Coatings with Specific Functions
2.4.1. Research Progress
2.4.2. Challenges and Development Directions for Future Functional Intelligent Coatings
- Challenges
- (1)
- Improving the adhesion of the coating further
- (2)
- Difference in thermal expansion coefficient between coating and base
- (3)
- Weather resistance of coatings
- 2.
- Methods for improving coating performance
- (1)
- Using high-quality raw materials
- (2)
- Increase the types and amounts of additives in the formula
- (3)
- Adopting advanced intelligent coating technology
- (1)
- Nanocoating technology
- (2)
- Ultrathin coating technology
- (3)
- Sputtering coating technology
3. Discussion and Conclusions
- Surface nanostructure optimization: With the development of technology, researchers continuously optimize the surface nanostructure of superhydrophobic coatings. By controlling the nanoscale structural characteristics, the superhydrophobic performance can be further improved. For example, using structures such as nanopillars, nanopores, and nanoprotrusions to increase surface area and reduce contact angle, thereby achieving higher hydrophobic effects.
- Sustainable development and environmental friendliness: In the paint industry, green environmental protection has become an important development direction. Superhydrophobic coatings are no exception, and the future trend will involve paying more attention to the sustainability and environmental friendliness of materials. Researchers are working hard to develop more environmentally friendly superhydrophobic coatings, avoiding the use of chemicals that are harmful to the environment, and searching for renewable and biodegradable materials.
- Multifunctional applications: In addition to having hydrophobic properties, future superhydrophobic coatings are likely to have other functions. For example, characteristics such as UV resistance, high-temperature resistance, oxidation resistance, fire resistance, etc. This multifunctional superhydrophobic coating will help to meet the needs of different fields and expand its application range.
- Further application expansion: Currently, superhydrophobic coatings are applied in multiple fields, such as architecture, automotive, aerospace, etc. In the future, with further technological improvements and cost reductions, superhydrophobic coatings are expected to be applied in a wider range of fields, such as household appliances, textiles, medical devices, etc.
- Implementation of self-healing function: Currently, one of the main drawbacks of superhydrophobic coatings is their susceptibility to wear or damage. One of the future development trends is to achieve the self-healing function of superhydrophobic coatings, allowing them to automatically repair after damage and extend their service life.
4. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Brodin, F.W.; Gregersen, Ø.W.; Syverud, K. Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material–A review. Nord. Pulp Pap. Res. J. 2014, 29, 156–166. [Google Scholar] [CrossRef]
- Nakayama, H.; Kaetsu, I.; Uchida, K.; Sakata, S.; Tougou, K.; Hara, T.; Matsubara, Y. Radiation curing of intelligent coating for controlled release and permeation. Radiat. Phys. Chem. 2002, 63, 521–523. [Google Scholar] [CrossRef]
- Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A superhydrophobic intelligent coating for flexible and wearable sensing electronics. Adv. Mater. 2017, 29, 1702517. [Google Scholar] [CrossRef] [PubMed]
- Kancharla, H.; Mandal, G.; Singh, S.; Mondal, K. Effect of prior copper-coating on the microstructural development and corrosion behavior of hot-dip galvanized Mn containing high strength steel sheet. Surf. Coat. Technol. 2022, 437, 128347. [Google Scholar] [CrossRef]
- Wang, Q.; Jaramillo, A.M.; Pavon, J.J.; Webster, T.J. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Inspektor, A.; Salvador, P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol. 2014, 257, 138–153. [Google Scholar] [CrossRef]
- Omar, A.H.; Muda, K.; Majid, Z.A.; Affam, A.C.; Ezechi, E.H. Effect of magnetic activated carbon on the surface hydrophobicity for initial biogranulation via response surface methodology. Water Environ. Res. 2020, 92, 73–83. [Google Scholar] [CrossRef]
- Lakshmi, R.; Bharathidasan, T.; Bera, P.; Basu, B.J. Fabrication of superhydrophobic and oleophobic sol-gel nanocomposite coating. Surf. Coat. Technol. 2012, 206, 3888–3894. [Google Scholar] [CrossRef]
- Erbil, H.Y. Practical applications of superhydrophobic materials and coatings: Problems and perspectives. Langmuir 2020, 36, 2493–2509. [Google Scholar] [CrossRef]
- El-Shamy, O.A.; Deyab, M.A. Eco-friendly biosynthesis of silver nanoparticles and their improvement of anti-corrosion performance in epoxy coatings. J. Mol. Liq. 2023, 376, 121488. [Google Scholar] [CrossRef]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State Mater. Sci. 2022, 47, 309–355. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Tiller, J.C.; Sprich, C.; Hartmann, L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J. Control. Release 2005, 103, 355–367. [Google Scholar] [CrossRef]
- Güler, O.; Çelebi, M.; Karabacak, A.H.; Çanakçı, A. The effect of advanced electrodeposited Ni-P-Cu coatings obtained with scrap cu plates on the tribological performance of Al powder metallurgy products. Surf. Coat. Technol. 2023, 468, 129750. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Kandasubramanian, B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv. 2014, 4, 22053–22093. [Google Scholar] [CrossRef]
- Cho, E.C.; Chang-Jian, C.W.; Chen, H.C.; Chuang, K.S.; Zheng, J.H.; Hsiao, Y.S.; Huang, J.H. Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chem. Eng. J. 2017, 314, 347–357. [Google Scholar] [CrossRef]
- Bayer, I.S. Superhydrophobic coatings from ecofriendly materials and processes: A review. Adv. Mater. Interfaces 2020, 7, 2000095. [Google Scholar] [CrossRef]
- Rabea, A.M.; Mohseni, M.; Mirabedini, S.; Tabatabaei, M.H. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Appl. Surf. Sci. 2012, 258, 4391–4396. [Google Scholar] [CrossRef]
- Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems. Adv. Sci. 2016, 3, 1500437. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, D.; Dong, Q.; Li, M.; Liu, A.; Wang, X.; Wang, S.; Liu, Q. Anticorrosive behavior of epoxy coating modified with hydrophobic nano-silica on phosphatized carbon steel. Prog. Org. Coat. 2021, 151, 106051. [Google Scholar] [CrossRef]
- Fan, F.-X.; Zheng, Y.-M.; Ba, M.; Wang, Y.-F.; Kong, J.-J.; Liu, J.-H.; Wu, Q. Long time super-hydrophobic fouling release coating with the incorporation of lubricant. Prog. Org. Coat. 2021, 152, 106136. [Google Scholar] [CrossRef]
- Wang, K.; Hou, D.; Wang, J.; Wang, Z.; Tian, B.; Liang, P. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Appl. Surf. Sci. 2018, 450, 57–65. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M. Hydrophobic materials and coatings: Principles of design, properties and applications. Russ. Chem. Rev. 2008, 77, 583. [Google Scholar] [CrossRef]
- Laad, M.; Ghule, B. Fabrication techniques of superhydrophobic coatings: A comprehensive review. Phys. Status Solidi 2022, 219, 2200109. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, S.; Basta, A.H. A cellulose nanoarchitectonic: Multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose. Carbohydr. Polym. 2020, 243, 116444. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Patel, M.; Shruti; Dwivedi, N.; Singh, S.; Kumar, P.; Chouhan, M.; Yadav, A.K.; Mondal, D.P.; et al. Development of copper impregnated bio-inspired hydrophobic antibacterial nanocoatings for textiles. Colloids Surf. B Biointerfaces 2022, 220, 112913. [Google Scholar] [CrossRef]
- Wurm, F.; Netzer, F.; Schäffner, U.; Leukel, J.; Schweiß, J.; Pham, T.; Bechtold, T. Single fiber coating of viscose filaments with cellulose acetate for partially hydrophobic hybrid fibers. J. Appl. Polym. Sci. 2023, 140, e53890. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, H.; Gong, S.; Ryou, M.-H.; Lee, Y.M. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators. Appl. Surf. Sci. 2018, 427, 139–146. [Google Scholar] [CrossRef]
- Baatti, A.; Erchiqui, F.; Bébin, P.; Godard, F.; Bussières, D. Fabrication of hydrophobic cellulose nanocrystals. Can. J. Chem. Eng. 2019, 97, 2050–2060. [Google Scholar] [CrossRef]
- Gashti, M.P.; Alimohammadi, F.; Shamei, A. Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf. Coat. Technol. 2012, 206, 3208–3215. [Google Scholar] [CrossRef]
- Rutter, T.; Hutton-Prager, B. Investigation of hydrophobic coatings on cellulose-fiber substrates with in-situ polymerization of silane/siloxane mixtures. Int. J. Adhes. Adhes. 2018, 86, 13–21. [Google Scholar] [CrossRef]
- Ren, J.; Tao, F.; Liu, L.; Wang, X.; Cui, Y. A novel TiO2@ stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation. Carbohydr. Polym. 2020, 232, 115807. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, S.; Wang, M.; Liu, W. Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings. Opt. Eng. 2015, 54, 057107. [Google Scholar] [CrossRef]
- Khoufech, A.; Benali, M.; Saleh, K. Influence of liquid formulation and impact conditions on the coating of hydrophobic surfaces. Powder Technol. 2015, 270, 599–611. [Google Scholar] [CrossRef]
- Batibay, G.S.; Kazancioglu, E.O.; Kose, E.; Arsu, N. Reversible tuning of UV-cured nano hybrid coating from hydrophobic to superhydrophilic. Prog. Org. Coat. 2021, 152, 106113. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Chen, Q.; Zhao, Y.; Xiao, P. One-step preparation of graphene oxide/silica nanoparticles superhydrophobic coating for enhanced anti-corrosion performance. Mater. Lett. 2022, 306, 130869. [Google Scholar] [CrossRef]
- Oberlintner, A.; Vesel, A.; Naumoska, K.; Likozar, B.; Novak, U. Permanent hydrophobic coating of chitosan/cellulose nanocrystals composite film by cold plasma processing. Appl. Surf. Sci. 2022, 597, 153562. [Google Scholar] [CrossRef]
- Park, M.J.; Gonzales, R.R.; Abdel-Wahab, A.; Phuntsho, S.; Shon, H.K. Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 2018, 426, 50–59. [Google Scholar] [CrossRef]
- Yook, S.; Park, H.; Park, H.; Lee, S.Y.; Kwon, J.; Youn, H.J. Barrier coatings with various types of cellulose nanofibrils and their barrier properties. Cellulose 2020, 27, 4509–4523. [Google Scholar] [CrossRef]
- Mekonnen, T.H.; Haile, T.; Ly, M. Hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings. Appl. Surf. Sci. 2021, 540, 148299. [Google Scholar] [CrossRef]
- Rao, W.; Shi, J.; Yang, M.; Yang, F.; Wu, T.; Yu, C.; Chen, M.-J.; Zhao, H.-B. One-pot fabrication of bio-based hydrophobic and flame-retardant coating for cotton fabric. Cellulose 2023, 30, 1943–1955. [Google Scholar] [CrossRef]
- Attia, N.F.; Mousa, M. Synthesis of intelligent coating for furniture textile and their flammability and hydrophobic properties. Prog. Org. Coat. 2017, 110, 204–209. [Google Scholar] [CrossRef]
- Samyn, P.; Schoukens, G.; Stanssens, D.; Vonck, L.; Abbeele, H.V.D. Hydrophobic waterborne coating for cellulose containing hybrid organic nanoparticle pigments with vegetable oils. Cellulose 2013, 20, 2625–2646. [Google Scholar] [CrossRef]
- Prathapan, R.; Glatz, B.A.; Ghosh, A.K.; Michel, S.; Fery, A.; Garnier, G.; Tabor, R.F. Enhancing printing resolution on hydrophobic polymer surfaces using patterned coatings of cellulose nanocrystals. Langmuir 2019, 35, 7155–7160. [Google Scholar] [CrossRef]
- Pacaphol, K.; Seraypheap, K.; Aht-Ong, D. Extraction and Silylation of Cellulose Nanofibers from Agricultural Bamboo Leaf Waste for Hydrophobic Coating on Paper. J. Nat. Fibers 2023, 20, 2178581. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, R.; Liu, G.; Pan, W. Zinc coating on steel by atmosphere plasma spray and their anti-corrosion behavior. Mater. Lett. 2022, 314, 131825. [Google Scholar] [CrossRef]
- Rezanka, S.; Somsen, C.; Eggeler, G.; Mauer, G.; Vaßen, R.; Guillon, O. A TEM investigation of columnar-structured thermal barrier coatings deposited by plasma spray-physical vapor deposition (PS-PVD). Plasma Chem. Plasma Process. 2018, 38, 791–802. [Google Scholar] [CrossRef]
- Re, G.; Croce, A.; D’Angelo, D.; Marchese, L.; Rinaudo, C.; Gatti, G. Application of nano-coating technology for the protection of natural lapideous materials. Surf. Coat. Technol. 2022, 441, 128507. [Google Scholar] [CrossRef]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Mofidabadi, A.H.J. Cyclodextrin-based nano-carrier for intelligent delivery of dopamine in a self-healable anti-corrosion coating. J. Environ. Chem. Eng. 2021, 9, 105457. [Google Scholar] [CrossRef]
- Jiang, D.; Xia, X.; Hou, J.; Cai, G.; Zhang, X.; Dong, Z. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy. Chem. Eng. J. 2019, 373, 285–297. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, F.; Lin, D.; Peng, J.; Zhu, Y.; Wang, H. A intelligent anti-corrosion coating based on triple functional fillers. Chem. Eng. J. 2022, 446, 137078. [Google Scholar] [CrossRef]
- Hamdy, A.S.; Doench, I.; Möhwald, H. Intelligent self-healing corrosion resistant vanadia coating for AA2024. Thin Solid Film. 2011, 520, 1668–1678. [Google Scholar] [CrossRef]
- Nie, W.; Xiang, M.; Yu, L.; Zhao, Y.; You, C.; Chen, M. Self-lubricating micro-arc oxidized polytetrafluoroethylene composite coating on rivet steel for improve corrosion/wear resistance. Mater. Chem. Phys. 2023, 306, 128019. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Shchukin, D.G.; Andreeva, D.V.; Zheludkevich, M.L.; Möhwald, H.; Ferreira, M.G.S. Sol-gel/polyelectrolyte active corrosion protection system. Adv. Funct. Mater. 2008, 18, 3137–3147. [Google Scholar] [CrossRef]
- Guo, H.; Yang, C.; Sun, H.; Xiang, N.; Li, C.; Wang, C. Silane coupling agent modified layered double hydroxide/graphene oxide preparation of intelligent anticorrosive coating. Surf. Coat. Technol. 2023, 467, 129728. [Google Scholar] [CrossRef]
- Ouarga, A.; Lebaz, N.; Tarhini, M.; Noukrati, H.; Barroug, A.; Elaissari, A.; Ben Youcef, H. Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. J. Mol. Liq. 2022, 354, 118862. [Google Scholar] [CrossRef]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. Synthesis of a non-hazardous/intelligent anti-corrosion nano-carrier based on beta-cyclodextrin-zinc acetylacetonate inclusion complex decorated graphene oxide (β-CD-ZnA-MGO). J. Hazard. Mater. 2020, 398, 122962. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Lei, J.; Chen, J.; Gou, J.; Li, Y.; Li, L. An intelligent coating based on pH-sensitive hybrid hydrogel for corrosion protection of mild steel. Chem. Eng. J. 2020, 392, 123742. [Google Scholar] [CrossRef]
- Pandiyarajan, S.; Liu, Z.C.; Liao, A.H.; Ganesan, M.; Huang, S.T.; Lee, C.T.; Chuang, H.C. High-performance anti-corrosion behavior of graphene oxide decorated nickel coating by novel ultrasonic-assisted supercritical-CO2 electrodeposition approach. Electrochim. Acta 2021, 387, 138543. [Google Scholar] [CrossRef]
- Lv, J.; Yue, Q.-X.; Ding, R.; Li, W.-H.; Wang, X.; Gui, T.-J.; Zhao, X.-D. Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes. J. Taiwan Inst. Chem. Eng. 2021, 118, 309–324. [Google Scholar] [CrossRef]
- Ouyang, J.; Hong, X.; Gao, Y. Retardation and self-repair of erosion pits by a two-stage barrier on bioactive-glass/layered double hydroxide coating of biomedical magnesium alloys. Surf. Coat. Technol. 2021, 405, 126562. [Google Scholar] [CrossRef]
- Syed, J.A.; Tang, S.; Meng, X. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability. Appl. Surf. Sci. 2016, 383, 177–190. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Li, N.; Zhan, Y.; Tian, L.; Wang, Y. Effect of surface modified nano-SiO2 particles on properties of TO@ CA/SR self-healing anti-corrosion composite coating. Prog. Org. Coat. 2022, 164, 106689. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Liu, Z.; Zhang, L.; Zhao, Y.; Li, Y.; Shao, C.; Ren, J. Study on preparation and anticorrosive performance of a new high hydrophobic anticorrosive coating. J. Appl. Polym. Sci. 2023, 140, e53459. [Google Scholar] [CrossRef]
- Ulaeto, S.B.; Rajan, R.; Pancrecious, J.K.; Rajan, T.; Pai, B. Developments in smart anticorrosive coatings with multifunctional characteristics. Prog. Org. Coat. 2017, 111, 294–314. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, S.; Fan, W.; Lin, D.; Zhang, K.; Bai, Z.; Wang, H. A intelligent composite coating with photothermal response, anti-UV and anti-corrosion properties. Chem. Eng. J. 2023, 452, 138983. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Madkour, M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J. Mol. Liq. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Li, Y.; Wang, C.; Shen, T.; Cheng, D.; Yang, H. Development of self-healing sol-gel anticorrosion coating with pH-responsive 1H-benzotriazole-inbuilt zeolitic imidazolate framework decorated with silica shell. Surf. Coat. Technol. 2023, 466, 129622. [Google Scholar] [CrossRef]
- Sun, J.; Martinsen, K.H.; Klement, U.; Kovtun, A.; Xia, Z.; Silva, P.F.B.; Hryha, E.; Nyborg, L.; Palermo, V. Controllable Coating Graphene Oxide and Silanes on Cu Particles as Dual Protection for Anticorrosion. ACS Appl. Mater. Interfaces 2023, 15, 38857–38866. [Google Scholar] [CrossRef] [PubMed]
- Darabinajand, B.; Mirmohseni, A.; Niaei, A. Modification of ZSM-5 zeolite nanoparticles by graphene oxide to improve anticorrosion properties of polyurethane coating. J. Appl. Polym. Sci. 2023, 140, e53908. [Google Scholar] [CrossRef]
- Lin, X.; Chen, X.; Zhao, S.; Dou, B.; Peng, Q.; Deng, Z.; Emori, W.; Gao, X.; Fang, Z. Effect of silane-modified fluorinated graphene on the anticorrosion property of epoxy coating. J. Appl. Polym. Sci. 2023, 140, e53637. [Google Scholar] [CrossRef]
- Thomas, D.; Philip, E.; Sindhu, R.; Ulaeto, S.B.; Pugazhendhi, A.; Awasthi, M.K. Developments in smart organic coatings for anticorrosion applications: A review. Biomass Convers. Biorefinery 2022, 12, 4683–4699. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Tedim, J.; Ferreira MG, S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim. Acta 2012, 82, 314–323. [Google Scholar] [CrossRef]
- Cao, K.; Yu, Z.; Zhu, L.; Yin, D.; Chen, L.; Jiang, Y.; Wang, J. Fabrication of superhydrophobic layered double hydroxide composites to enhance the corrosion-resistant performances of epoxy coatings on Mg alloy. Surf. Coat. Technol. 2021, 407, 126763. [Google Scholar] [CrossRef]
- Abbout, S.; Hsissou, R.; Chebabe, D.; Erramli, H.; Hajjaji, N. Investigation of the anti-corrosion properties of Galactomannan as additive in epoxy coatings for carbon steel: Rheological and electrochemical study. Inorg. Chem. Commun. 2021, 134, 108971. [Google Scholar] [CrossRef]
- Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-stimuli-responsive intelligent nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy. ACS Appl. Mater. Interfaces 2019, 11, 4425–4438. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, L.; Ju, P.; Huang, L.; Qian, H.; Zhang, D.; Li, X.; Terryn, H.A.; Mol, J.M.C. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl. Mater. Interfaces 2018, 10, 23369–23379. [Google Scholar] [CrossRef]
- Wang, M.D.; Liu, M.Y.; Fu, J.J. An intelligent anticorrosion coating based on pH-responsive intelligent nanocontainers fabricated via a facile method for protection of carbon steel. J. Mater. Chem. A 2015, 3, 6423–6431. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Guo, X.; Wu, S.; Liu, T.; Yang, J.; Ren, C.; Li, S.; Zhang, D. Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating. Chem. Eng. J. 2022, 433, 134515. [Google Scholar] [CrossRef]
- Hamdy, A.S.; Doench, I.; Möhwald, H. intelligent self-healing anti-corrosion vanadia coating for magnesium alloys. Prog. Org. Coat. 2011, 72, 387–393. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Q.; Wang, W.; Li, Q.; Chen, S. Synthesis of intelligent nanofiber coatings with autonomous self-warning and self-healing functions. ACS Appl. Mater. Interfaces 2022, 14, 27168–27176. [Google Scholar] [CrossRef]
- Dehghani, A.; Sanaei, Z.; Fedel, M.; Ramezanzadeh, M.; Mahdavian, M.; Ramezanzade, B. Fabrication of an intelligent anti-corrosion silane film using a MoO42-loaded Micro/mesoporous ZIF67-MOF/multi-walled-CNT/APTES core-shell nano-container. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130511. [Google Scholar] [CrossRef]
- Dobysheva, L.V.; Chausov, F.F.; Lomova, N.V. Electronic structure and chemical bonding in smart anti-corrosion coatings. Mater. Today Commun. 2021, 29, 102892. [Google Scholar] [CrossRef]
- Yook, J.; Jeong, D.; Lee, J.C. Synthesis of Citronellol-Derived Antibacterial Polymers and Effect of Thioether, Sulfoxide, Sulfone, and Ether Functional Groups on Their Bactericidal Activity. Macromolecules 2023, 56, 3406–3420. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Cai, H.; Wang, P.; Zhang, D.; Wang, Y.; Li, E. An intelligent self-defensive coating based on sulfide ion responsive nanocontainers for suppression of microbiologically influenced corrosion induced by sulfate reducing bacteria. Corros. Sci. 2021, 188, 109543. [Google Scholar] [CrossRef]
- Banerjee, D.; Guo, X.; Benavides, J.; Rameau, B.; Cloutier, S.G. Designing green self-healing anticorrosion conductive smart coating for metal protection. Smart Mater. Struct. 2020, 29, 105027. [Google Scholar] [CrossRef]
- Yeh, Y.; Wu, P.; Li, J.; Wang, S.; Huang, J.; Chuang, K.; Tsai, T.; Kao, L. Tetrapodal ZnO nanomaterial synthesis for antibacterial fluoroethylene vinyl ether polymer coating. Mater. Lett. 2023, 344, 134435. [Google Scholar] [CrossRef]
- Varisco, M.; Khanna, N.; Brunetto, P.S.; Fromm, K.M. New antimicrobial and biocompatible implant coating with synergic silver–vancomycin conjugate action. ChemMedChem 2014, 9, 1221–1230. [Google Scholar] [CrossRef]
- Park, C.; Kim, T.; Samuel, E.P.; Kim, Y.-I.; An, S.; Yoon, S.S. Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater. J. Power Sources 2021, 506, 230142. [Google Scholar] [CrossRef]
- Popoola AP, I.; Olorunniwo, O.E.; Ige, O.O. Corrosion resistance through the application of anti-corrosion coatings. Dev. Corros. Prot. 2014, 13, 241–270. [Google Scholar]
- Das, P.; Sherazee, M.; Marvi, P.K.; Ahmed, S.R.; Gedanken, A.; Srinivasan, S.; Rajabzadeh, A.R. Waste-Derived Sustainable Fluorescent Nanocarbon-Coated Breathable Functional Fabric for Antioxidant and Antimicrobial Applications. ACS Appl. Mater. Interfaces 2023, 15, 29425–29439. [Google Scholar] [CrossRef] [PubMed]
- Behzadinasab, S.; Williams, M.D.; Aktuglu, M. Porous Antimicrobial Coatings for Killing Microbes within Minutes. ACS Appl. Mater. Interfaces 2023, 15, 15120–15128. [Google Scholar] [CrossRef]
- Liu, T.; Yan, S.; Zhou, R.; Zhang, X.; Yang, H.; Yan, Q.; Yang, R.; Luan, S. Self-Adaptive Antibacterial Coating for Universal Polymeric Substrates Based on a Micrometer-Scale Hierarchical Polymer Brush System. ACS Appl. Mater. Interfaces 2020, 12, 42576–42585. [Google Scholar] [CrossRef]
- Siva, T.; Kandhasamy, K.; Vaduganathan, K.; Sathiyanarayanan, S.; Ramadoss, A. Electrosynthesis of Silica Reservoir Incorporated Dual Stimuli Responsive Conducting Polymer-Based Self-Healing Coatings. Ind. Eng. Chem. Res. 2023, 62, 3942–3951. [Google Scholar] [CrossRef]
- Mottoul, M.; Giljean, S.; Pac, M.; Landry, V.; Morin, J. Self-healing polyacrylate coatings with dynamic H-bonds between urea groups. J. Appl. Polym. Sci. 2023, 140, e53853. [Google Scholar] [CrossRef]
- Fang, X.; Sun, H.; Wu, C. Ag Nanoparticle-Thiolated Chitosan Composite Coating Reinforced by Ag-S Covalent Bonds with Excellent Electromagnetic Interference Shielding and Joule Heating Performances. ACS Appl. Mater. Interfaces 2023, 15, 28465–28475. [Google Scholar] [CrossRef]
- Tong, Y.Q.; Chen, L.; Yang, G.J. Excellently abradable seal coating with spherical closed-pore for next-generation aero-engine application. Mater. Lett. 2022, 307, 131024. [Google Scholar] [CrossRef]
- Li, J.J.; Zhou, Y.N.; Luo, Z.H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 2017, 322, 693–701. [Google Scholar] [CrossRef]
- Mai, V.C.; Das, P.; Zhou, J.; Lim, T.T.; Duan, H. Mussel-Inspired Dual-Superlyophobic Biomass Membranes for Selective Oil/Water Separation. Adv. Mater. Interfaces 2020, 7, 1901756. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, D.-M.; Shaikh, A.R.; Fang, L.-F.; Jeon, S.; Saeki, D.; Zhang, L.; Liu, C.-J.; Matsuyama, H. Dual superlyophobic aliphatic polyketone membranes for highly efficient emulsified oil–water separation: Performance and mechanism. ACS Appl. Mater. Interfaces 2018, 10, 30860–30870. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.; Arthanareeswaran, G.; Bose, A.C.; Kumar, P.S. Hydrophilic hierarchical carbon with TiO2 nanofiber membrane for high separation efficiency of dye and oil-water emulsion. Sep. Purif. Technol. 2020, 241, 116709. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Li, J.; Zhang, H.; Shi, C.; Guo, Z.; Bai, B. Facile fabrication of durable mesh with reversible photo-responsive wettability for intelligent oil/water separation. Prog. Org. Coat. 2021, 160, 106520. [Google Scholar] [CrossRef]
- Kim, D.S.; Kang, J.; Jung, J.Y.; Hwang, M.; Seo, S.; Kim, J.H. Facile Fabrication of Superhydrophobic Polymer Membranes with Hierarchical Structure for Efficient Oil/Water Separation. Fibers Polym. 2022, 23, 2365–2372. [Google Scholar] [CrossRef]
- Jannatun, N.; Taraqqi-A-Kamal, A.; Rehman, R.; Kuker, J.; Lahiri, S.K. A facile cross-linking approach to fabricate durable and self-healing superhydrophobic coatings of SiO2-PVA@ PDMS on cotton textile. Eur. Polym. J. 2020, 134, 109836. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Guo, Z.; Huang, J.; Liu, W. Multi-layer superhydrophobic nickel foam (NF) composite for highly efficient water-in-oil emulsion separation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127299. [Google Scholar] [CrossRef]
- Rizvi, A.; Chu, R.K.; Lee, J.H.; Park, C.B. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl. Mater. Interfaces 2014, 6, 21131–21140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lai, H.; Cheng, Z.; Zhang, D.; Wang, W.; Liu, P.; Yu, X.; Xie, Z.; Liu, Y. Superhydrophobic shape memory film with switchable adhesion to both water and solid. Chem. Eng. J. 2021, 420, 129862. [Google Scholar] [CrossRef]
- Alazab, A.A.; Saleh, T.A. Underwater superoleophobic cellulose/acrylamide-modified magnetic polyurethane foam for efficient oil/water separation. Mater. Chem. Phys. 2023, 302, 127609. [Google Scholar] [CrossRef]
- Bentini, R.; Pola, A.; Rizzi, L.G.; Athanassiou, A.; Fragouli, D. A highly porous solvent free PVDF/expanded graphite foam for oil/water separation. Chem. Eng. J. 2019, 372, 1174–1182. [Google Scholar] [CrossRef]
- Brostowitz, N.R.; Weiss, R.A.; Cavicchi, K.A. Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett. 2014, 3, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Wang, Y.; Jia, C.; Wan, Z.; Luo, J.; Malik, H.A.; Weng, X.; Xie, J.; Deng, L. Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Appl. Mater. Interfaces 2018, 10, 35533–35538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, J.; Jiao, J.F.; Chen, H.; Liu, P. Preparation and properties testing of intelligent color-changing camouflage coating. Adv. Mater. Res. 2013, 659, 15–18. [Google Scholar] [CrossRef]
- Macharia, D.K.; Ahmed, S.; Zhu, B.; Liu, Z.; Wang, Z.; Mwasiagi, J.I.; Chen, Z.; Zhu, M. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl. Mater. Interfaces 2019, 11, 13370–13379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, X.; Wang, T.; Xu, W.; Luo, G.; Wang, Y.; Zhou, C. Vanadium dioxide coatings with enhanced optical and thermochromic performances. Opt. Mater. 2023, 136, 113498. [Google Scholar] [CrossRef]
- Mokhtari, J.; Nouri, M. Electrical conductivity and chromic behavior of poly (3-methylthiophene)—Coated polyester fabrics. Fibers Polym. 2012, 13, 139–144. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, F.; Bao, S.; You, Y. Interlayer-expanded MoSe2 nanotubes as multifunctional separator coating for high-performance lithium-sulfur battery. Mater. Lett. 2023, 331, 133481. [Google Scholar] [CrossRef]
- Lee, J.C.; In, S.H.; Park, C.H.; Kim, C.S. Development of multi-layer membrane manufacturing technology for stent coating using electrospinning technology. Mater. Lett. 2023, 331, 133415. [Google Scholar]
- Wang, X.; He, Y.; Wang, C.; Bai, Y.; Zhang, F.; Wu, Y.; Song, G.; Wang, Z.J. Thermal performance regulation of high-entropy rare-earth disilicate for thermal environmental barrier coating materials. J. Am. Ceram. Soc. 2022, 105, 4588–4594. [Google Scholar] [CrossRef]
- Li, F.; Liu, T.; Gu, W.; Gao, Q.; Li, J.; Shi, S.Q. Bioinspired super-tough and multifunctional soy protein-based material via a facile approach. Chem. Eng. J. 2021, 405, 126700. [Google Scholar] [CrossRef]
- Weng, H.; Duan, F.L.; Ji, Z.; Chen, X.; Yang, Z.; Zhang, Y.; Zou, B. Electrical insulation improvements of ceramic coating for high temperature sensors embedded on aeroengine turbine blade. Ceram. Int. 2020, 46, 3600–3605. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Huang, Y.; Lin, B.; Ling, S.; Mei, C.; Pan, M. Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection. Chem. Eng. J. 2022, 450, 137910. [Google Scholar] [CrossRef]
- Dhyani, A.; Pike, C.; Braid, J.L.; Whitney, E.; Burnham, L.; Tuteja, A. Facilitating Large-Scale Snow Shedding from In-Field Solar Arrays using Icephobic Surfaces with Low-Interfacial Toughness. Adv. Mater. Technol. 2022, 7, 2101032. [Google Scholar] [CrossRef]
- Tian, S.; Li, R.; Liu, X.; Wang, J.; Yu, J.; Xu, S.; Tian, Y.; Yang, J.; Zhang, L. Inhibition of defect-induced ice nucleation, propagation, and adhesion by bioinspired self-healing anti-icing coatings. Research 2023, 6, 0140. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, G.; Yao, P.; Dang, L.; Liu, Z.; Lu, J.; Li, W. Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications. Nano Res. 2023, 16, 7810–7819. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Dong, J.; Li, D.; Dong, W.; Li, H.; Zhou, Y.; Liu, Q.; Deng, B. Mussel-inspired multifunctional hydrogels with adhesive, self-healing, antioxidative, and antibacterial activity for wound healing. ACS Appl. Mater. Interfaces 2023, 15, 16515–16525. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Wei, Y.; Ding, H.; Huang, W.; Gui, X.; Shi, W.; Shen, Y.; Tao, K.; Xie, X. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl. Mater. Interfaces 2020, 12, 19069–19079. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zheng, B.; Zhou, S.; Shi, C.; Liang, Y.; Hu, L. Development and Application of Intelligent Coating Technology: A Review. Coatings 2024, 14, 597. https://doi.org/10.3390/coatings14050597
Chen X, Zheng B, Zhou S, Shi C, Liang Y, Hu L. Development and Application of Intelligent Coating Technology: A Review. Coatings. 2024; 14(5):597. https://doi.org/10.3390/coatings14050597
Chicago/Turabian StyleChen, Xiaoyi, Bingbing Zheng, Shujing Zhou, Chengyang Shi, Yiwei Liang, and Lina Hu. 2024. "Development and Application of Intelligent Coating Technology: A Review" Coatings 14, no. 5: 597. https://doi.org/10.3390/coatings14050597
APA StyleChen, X., Zheng, B., Zhou, S., Shi, C., Liang, Y., & Hu, L. (2024). Development and Application of Intelligent Coating Technology: A Review. Coatings, 14(5), 597. https://doi.org/10.3390/coatings14050597