Preparation of Toddalia asiatica (L.) Lam. Extract Microcapsules and Their Effect on Optical, Mechanical and Antibacterial Performance of Waterborne Topcoat Paint Films
Abstract
:1. Introduction
2. Test Materials and Methods
2.1. Experimental Materials
2.2. Preparation of Microcapsules
2.2.1. Preparation Process of Microcapsules
2.2.2. Orthogonal Test Design of Microcapsules
2.3. Preparation of the Waterborne Topcoat Paint Film
2.4. Testing and Characterization
2.4.1. Characterization of Microcapsules
2.4.2. Color Difference Test
2.4.3. Gloss Test
2.4.4. Transmittance Test
2.4.5. Roughness and Tensile Test
2.4.6. Cold Liquid Resistance Test
2.4.7. Antibacterial Properties Test
3. Results and Discussion
3.1. Analysis of Microencapsulation Preparation
3.1.1. Analysis of Microencapsulation Yield Rate and Coverage Rate
3.1.2. Analysis of Microscopic Morphology
3.1.3. Analysis of Chemical Composition of Microcapsules
3.2. Analysis of the Waterborne Topcoat Paint Film Properties
3.2.1. Analysis of the Waterborne Topcoat Paint Film on Microscopic Morphology and Chemical Composition
3.2.2. Microcapsules on the Optical Properties of the Waterborne Topcoat Paint Film
3.2.3. Effect of Microcapsules on the Cold Liquid Resistance of the Waterborne Topcoat Paint Film
3.2.4. Effect of Microcapsules on the Mechanical Properties of the Waterborne Topcoat Paint Film
3.2.5. Effect of Microcapsules on the Antibacterial Performance of the Waterborne Topcoat Paint Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hermann, A.; Giljean, S.; Pac, M.J.; Marsiquet, C.; Burr, D.; Landry, V. Physico-mechanical characterisation of basecoats for tailored UV-cured multilayered wood coating systems. Prog. Org. Coat. 2023, 182, 107673. [Google Scholar] [CrossRef]
- Zhou, C.; Qian, Y.; Kaner, J. A study on smart home use intention of elderly consumers based on technology acceptance models. PLoS ONE 2024, 19, e0300574. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Fu, W.; Zhao, Y. Optimal design of the traditional Chinese wood furniture joint based on experimental and numerical method. Wood. Res. 2024, 69, 50–59. [Google Scholar] [CrossRef]
- Chen, B.; Yu, X.; Hu, W. Experimental and numerical studies on the cantilevered leg joint and its reinforced version commonly used in modern wood furniture. Bioresources 2022, 17, 3952–3964. [Google Scholar] [CrossRef]
- Areias, L.R.P.; Farinha, J.P.S. Waterborne Polymer Coatings with Bright Noniridescent Structural Colors. ACS Appl. Mater. 2023, 16, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.D.; Viciosa, M.T.; Oliveira, M.B.; Fernandes, A.; Mano, J.F.; Baleiza, C.; Farina, J.P.S. Reversible imine crosslinking in waterborne self-healing polymer coatings. Prog. Org. Coat. 2023, 180, 107552. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, N.; Xu, L.; Guan, H.Y. Study on cold/warm sensation of materials used in desktop of furniture. Wood Res. 2020, 65, 497–506. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, Y.; Konukcu, A.C. Study on withdrawal load resistance of screw in wood-based materials: Experimental and numerical. Wood Mater. Sci. Eng. 2023, 18, 334–343. [Google Scholar] [CrossRef]
- Singh, A.P.; Kim, Y.S.; Chavan, R.R. Relationship of wood cell wall ultrastructure to bacterial degradation of wood. Iawa J. 2019, 40, 845–870. [Google Scholar] [CrossRef]
- Luo, Y.R.; Xu, W. Optimization of Panel Furniture Plates Rework Based on Intelligent Manufacturing. Bioresources 2023, 18, 5198–5208. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, C.D.; Mustata, F.; Rosu, D.; Rosca, I.; Rusu, T. Epoxy coatings based on modified vegetable oils for wood surface protection against fungal degradation. ACS Appl. Mater. Inter. 2020, 12, 14443–14458. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xia, H.; Hu, W. The design and evaluation of the three-dimensional corner joints used in wooden furniture frames: Experimental and numerical. Bioresources 2022, 17, 2143–2156. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Kasal, A.; Erdil, Y.Z. The State of the Art of Biomechanics Applied in Ergonomic Furniture Design. Appl. Sci. 2023, 13, 12120. [Google Scholar] [CrossRef]
- Jiao, C.Y.; Shao, Q.; Wu, M.Y.; Zheng, B.; Guo, Z.; Yi, J.M.; Zhang, J.X.; Lin, J.; Wu, S.D.; Dong, M.Y. 2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: Preparation and property analysis. Polymer 2020, 190, 122196. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Li, S. Characterizing mode I fracture behaviors of wood using compact tension in selected system crack propagation. Forests 2021, 12, 1369. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.B.; Zhang, Z.J.; Li, H.Z. Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023, 28, 4979. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, J. Bol-Bearing Yield Strength of Three-Layered Cross-Laminated Timber Treated with Phenol Formaldehyde Resin. Forests 2020, 11, 551. [Google Scholar] [CrossRef]
- Weng, M.; Zhu, Y.; Mao, W.; Zhou, J.; Xu, W. Nano-Silica/Urea-Formaldehyde Resin-Modified Fast-Growing Lumber Performance Study. Forests 2023, 14, 1440. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J. Study on static lateral load–slip behavior of single-shear stapled connections in plywood for upholstered furniture frame construction. J. Wood Sci. 2021, 67, 40. [Google Scholar] [CrossRef]
- Huang, N.; Yan, X.X. Preparation of aloe-emodin microcapsules and its effect on antibacterial and optical properties of water-based coating. Polymers 2023, 15, 1728. [Google Scholar] [CrossRef]
- Roshan, A.B.; Venkatesh, H.N.; Dubery, N.K.; Mohana, D.C. Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B1 inhibitory activities for safe storage of maize. Int. J. Biol. Macromol. 2022, 204, 476–484. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Jiang, M.; Li, J. Effect of selective enhancement on the bending performance of fused deposition methods 3D-printed PLA models. Bioresources 2024, 19, 2660–2669. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, W.; Wu, S. Performances of Green Velvet Material (PLON) Used in Upholstered Furniture. Bioresources 2023, 18, 5108–5119. [Google Scholar] [CrossRef]
- Qiu, H.Y.; Xiao, X.H.; Li, G.K. Separation and purification of furanocoumarins from Toddalia asiatica (L.) Lam. using microwave-assisted extraction coupled with high-speed counter-current chromatography. J. Sep. Sci. 2012, 35, 901–906. [Google Scholar] [CrossRef]
- Zeng, Z.; Tian, R.; Feng, J.; Yang, N.A.; Yuan, L. A systematic review on traditional medicine Toddalia asiatica (L.) Lam.: Chemistry and medicinal potential. Saudi Pharm. J. 2021, 29, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Lobine, D.; Pairyanen, B.; Zengin, G.; Yilmaz, M.A.; Ouelbani, R.; Bensari, S.; Ak, G.; Abdallah, H.H.; Imran, M.; Mahomoodally, M.F. Chemical Composition and Pharmacological Evaluation and of Toddalia asiatica (Rutaceae) Extracts and Essential Oil by in Vitro and in Silico Approaches. Chem. Biodivers. 2021, 18, e2000999. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ji, Z.Q.; Li, Y.M.; Li, Y.Y.; Guo, C.S. Antioxidant and antibacterial activity of Toddalia asiatica (Linn) Lam root extracts. Afr. J. Tradit. Complement. Altern. Med. 2016, 12, 169–179. [Google Scholar] [CrossRef]
- Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J Ethnopharmacol. 2009, 123, 494–498. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Wang, P.Q.; Wang, P.Y.; Ma, C.Y.; Kang, W.Y. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complem. Altern. M. 2018, 18, 261. [Google Scholar] [CrossRef]
- Raj, M.K.; Balachandran, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antimicrobial activity of Ulopterol isolated from Toddalia asiatica (L.) Lam.: A traditional medicinal plant. J. Ethnopharmacol. 2012, 140, 161–165. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.H.; Tian, X.J.; Koseki, S.; Chen, S.G.; Ye, X.Q.; Ding, T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit. Rev. Food Sci. Nutr. 2019, 59, S153–S161. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Y.; Deng, J.; Ye, Q.X.; Zhang, Z.F. The Antibacterial Activity of Natural-derived Flavonoids. Curr. Top. Med. Chem. 2022, 22, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, H.R.; Zhou, Q.X. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Prog. Org. Coat. 2018, 125, 403–410. [Google Scholar] [CrossRef]
- Jiang, G.F.; Li, X.F.; Che, Y.L.; Lv, Y.; Liu, F.; Wang, Y.Q.; Zhao, C.C.; Wang, X.J. Antibacterial and anticorrosive properties of CuZnO@RGO waterborne polyurethane coating in circulating cooling water. Environ. Sci. Pollut. R 2019, 26, 9027–9040. [Google Scholar] [CrossRef] [PubMed]
- Orwa, J.A.; Jondiko, I.J.O.; Minja, R.J.A.; Bekunda, A. The use of Toddalia asiatica (L) Lam. (Rutaceae) in traditional medicine practice in East Africa. J. Ethnopharmacol. 2008, 115, 257–262. [Google Scholar] [CrossRef]
- GB/T 11186.3-1989; Methods for Measuring the Colour of Paint Films. Part III: Calculation of Colour Differences. Standardization Administration of the People’s Republic of Chin: Beijing, China, 1990.
- GB/T 9754-2007; Paints and Varnishes-Determination of Specular Gloss of Non-Metallic Paint Films at 20°, 60° and 85°. Standardization Administration of the People’s Republic of Chin: Beijing, China, 2007.
- GB/T 4893.1-2021; Methods for Measuring the Colour of Paint Films. Part I: Cold Liquid Resistance Measurement Method. Standardization Administration of the People’s Republic of Chin: Beijing, China, 2021.
- GB/T 21866-2008; Test Method and Effect for Antibacterial Capability of Paints Film. Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
- GB/T 4789.2-2022; National Standard for Food Safety Microbiological Examination of Foods Determination of Total Colony. Standardization Administration of the People’s Republic of Chin: Beijing, China, 2022.
- Ma, W.Y.; Ali, I.; Li, Y.L.; Hussain, H.; Zhao, H.Z.; Sun, X.; Xie, L.; Cui, L.; Wang, D.J. A Simple and Efficient Two-Dimensional High-Speed Counter-Current Chromatography Linear Gradient and Isocratic Elution Modes for the Preparative Separation of Coumarins from Roots of Toddalia asiatica (Linn.) Lam. Molecules 2021, 26, 5986. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.X.; Tao, Y.; Qian, X.Y. Preparation and optimization of waterborne acrylic core microcapsules for waterborne wood coatings and comparison with epoxy resin core. Polymers 2020, 12, 2366. [Google Scholar] [CrossRef]
- Gangopadhyay, A. Plant-derived natural coumarins with anticancer potentials: Future and challenges. J. Herb. Med. 2023, 42, 100797. [Google Scholar] [CrossRef]
- Yan, X.X.; Chang, Y.J.; Qian, X.Y. Preparation and Self-Repairing Properties of Urea Formaldehyde-Coated Epoxy Resin Microcapsules. Int. J. Polym. Sci. 2019, 2019, 7215783. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.X. Effect of Silane Coupling Agent Modification on Properties of Brass Powder-Water-Based Acrylic Coating on Tilia europaea. Polymers 2023, 15, 1396. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Ding, K.; Jiang, M. Immersion polishing post-treatment of PLA 3D printed formed parts on its surface and mechanical performance. Bioresources 2023, 18, 7995–8006. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Jiang, M.H.; Li, J.Y. Effect of slicing parameters on the light transmittance of 3D-printed polyethylene terephthalate glycol products. Bioresources 2024, 19, 500–509. [Google Scholar] [CrossRef]
- Hu, W.G.; Wan, H. Comparative study on weathering durability properties of phenol formaldehyde resin modified sweetgum and southern pine specimens. Maderas-Cienc. Tecnol. 2022, 24, 17. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, W.G. Numerical study on effects of tenon sizes on withdrawal load capacity of mortise and tenon joint. Wood Res. 2021, 66, 321–330. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W. An aesthetic transparent wood resistant to Escherichia coli based on interface optimization. Eur. J. Wood Wood Prod. 2023, 81, 1569–1579. [Google Scholar] [CrossRef]
- Odongo, E.A.; Mutai, P.C.; Amugune, B.K.; Mungai, N.N.; Akinyi, M.O.; Kimondo, J. Evaluation of the antibacterial activity of selected Kenyan medicinal plant extract combinations against clinically important bacteria. BMC Complement Med. 2023, 23, 100. [Google Scholar] [CrossRef]
Material | Specification | Manufacturer |
---|---|---|
Urea | AR | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
37% Formaldehyde | AR | Xilong Science Co., Ltd., Shantou, China |
Triethanolamine | AR | Tianjin Zhiyuan Chemical Reagent Co., Ltd., Tianjin, China |
Citric acid monohydrate | AR | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Sodium dodecylbenzene sulfonate | AR | Tianjin Juhengda Chemical Co., Ltd., Tianjin, China |
Anhydrous ethanol | AR | Wuxi Jingke Chemical Co., Ltd., Wuxi, China |
Nutrient agar medium | - | GuangDong Zhongshan Baike Microbiotechnology Co., Ltd., ZhongShan, China |
Nutrient broth medium | - | Hangzhou Microbiology Reagent Co., Ltd., Hangzhou, China |
Sodium chloride | AR | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
Staphylococcus aureus | - | Beijing Bio-Care Biotechnology Co., Ltd., Beijing, China |
Escherichia coli | - | Beijing Bio-Care Biotechnology Co., Ltd., Beijing, China |
Detergent | Guangzhou Liby Enterprise Group Co., Ltd., Guangzhou, China |
Device | Specification | Manufacturer |
---|---|---|
Thermostatic heating magnetic stirrer | DF-101S | Shanghai Qiuzuo Scientific Instrument Co., Ltd., Shanghai, China |
Suction filter | SHZ-D (Ⅲ) | Shanghai Qiuzuo Scientific Instrument Co., Ltd., Shanghai, China |
Drying box | DHG-9240A | Shanghai Aozhen Instrument Manufacturing Co., Ltd., Shanghai, China |
Scanning electron microscope | Quanta-200 | Thermo Fisher Scientific, Massachusetts, United States |
Zeiss optical microscope | AX10 | Carl Zeiss AG, Oberkochen, Germany |
Infrared spectrometer | VERTEX 80V | Brucker AG, Karlsruhe, Germany |
Glossmeter | HG268 | Shenzhen San’enshi Technology Co., Ltd., Shenzhen, China |
Colorimeter | SEGT-J | Zhuhai Tianchuang Instrument Co., Ltd., Zhuhai, China |
Ultraviolet spectrophotometer | U-3900/3900H | Hitachi Instruments (Suzhou) Co., Ltd., Suzhou, China |
Roughness meter | J8-4C | Shanghai Taiming Optical Instrument Co., Ltd., Shanghai, China |
Universal mechanical testing machine | AG-IC10OKN | Kyoto Shimadzu Production Institute, Kyoto, Japan |
Constant temperature and humidity incubator | HWS-80 | Zhejiang Lichen Instrument Technology Co., Ltd., Zhejiang, China |
High speed centrifuge | LC-LX-HR185C | Zhejiang Lichen Instrument Technology Co., Ltd., Zhejiang, China |
Colony counter | XK97-A | MingGuang GuangJulong Experimental Equipment Business Department, MingGuang, China |
Level | Wcore:Wwall | Emulsifier Concentration (%) | Temperature (°C) | Time (h) |
---|---|---|---|---|
1 | 0.6:1 | 1 | 50 | 1.0 |
2 | 0.8:1 | 2 | 60 | 1.5 |
3 | 1:1 | 3 | 70 | 2.0 |
Sample (#) | Wcore:Wwall | Emulsifier Concentration (%) | Temperature (°C) | Time (h) |
---|---|---|---|---|
1 | 0.6:1 | 1 | 50 | 1.0 |
2 | 0.6:1 | 2 | 60 | 1.5 |
3 | 0.6:1 | 3 | 70 | 2.0 |
4 | 0.8:1 | 1 | 60 | 2.0 |
5 | 0.8:1 | 2 | 70 | 1.0 |
6 | 0.8:1 | 3 | 50 | 1.5 |
7 | 1:1 | 1 | 70 | 1.5 |
8 | 1:1 | 2 | 50 | 2.0 |
9 | 1:1 | 3 | 60 | 1.0 |
Sample (#) | Urea (g) | 37% Formaldehyde (g) | Ethanol (g) | Extracts of Toddalia asiatica (L.) Lam. (g) | Emulsifier (g) | Deionized Water (g) |
---|---|---|---|---|---|---|
1 | 10.00 | 16.22 | 9.41 | 0.19 | 1.04 | 102.96 |
2 | 10.00 | 16.22 | 9.41 | 0.19 | 1.04 | 50.96 |
3 | 10.00 | 16.22 | 9.41 | 0.19 | 1.04 | 33.63 |
4 | 10.00 | 16.22 | 12.54 | 0.26 | 1.43 | 141.57 |
5 | 10.00 | 16.22 | 12.54 | 0.26 | 1.43 | 70.07 |
6 | 10.00 | 16.22 | 12.54 | 0.26 | 1.43 | 46.24 |
7 | 10.00 | 16.22 | 15.68 | 0.32 | 1.76 | 174.24 |
8 | 10.00 | 16.22 | 15.68 | 0.32 | 1.76 | 86.24 |
9 | 10.00 | 16.22 | 15.68 | 0.32 | 1.76 | 56.91 |
Sample (#) | Urea (g) | 37% Formaldehyde (g) | Ethanol (g) | Extracts of Toddalia asiatica (L.) Lam. (g) | Emulsifier (g) | Deionized Water (g) |
---|---|---|---|---|---|---|
10 | 10.00 | 16.22 | 0.13 | 6.27 | 0.72 | 35.28 |
11 | 10.00 | 16.22 | 0.19 | 9.41 | 1.04 | 50.96 |
12 | 10.00 | 16.22 | 0.26 | 12.54 | 1.43 | 70.07 |
13 | 10.00 | 16.22 | 0.32 | 15.68 | 1.76 | 86.24 |
14 | 10.00 | 16.22 | 0.38 | 18.82 | 2.09 | 102.41 |
Sample (#) | Factor A Wcore:Wwall | Factor B Emulsifier Concentration (%) | Factor C Temperature (°C) | Factor D Time (h) | Yield Rate (%) | Standard Deviation |
---|---|---|---|---|---|---|
1 | 0.6:1 | 1 | 50 | 1.0 | 56.53 | 0.7 |
2 | 0.6:1 | 2 | 60 | 1.5 | 61.75 | 0.5 |
3 | 0.6:1 | 3 | 70 | 2.0 | 52.18 | 1.5 |
4 | 0.8:1 | 1 | 60 | 2.0 | 60.94 | 1.3 |
5 | 0.8:1 | 2 | 70 | 1.0 | 58.85 | 1.2 |
6 | 0.8:1 | 3 | 50 | 1.5 | 60.60 | 1.5 |
7 | 1:1 | 1 | 70 | 1.5 | 56.03 | 1.3 |
8 | 1:1 | 2 | 50 | 2.0 | 57.69 | 1.4 |
9 | 1:1 | 3 | 60 | 1.0 | 58.52 | 1.9 |
Mean 1 | 56.820 | 57.833 | 58.273 | 57.967 | ||
Mean 2 | 60.130 | 59.430 | 60.403 | 59.460 | ||
Mean 3 | 57.413 | 57.100 | 55.687 | 56.937 | ||
Range | 3.310 | 2.330 | 4.716 | 2.523 | ||
Factor primary and secondary levels | C > A > D > B | |||||
Optimal decision | A2 B2 C2 D2 |
Factors | Sum of Squared Deviations | Degrees of Freedom | Fratio | Fcritical Value | Significance |
---|---|---|---|---|---|
A | 18.688 | 2 | 1.063 | 4.460 | |
B | 8.516 | 2 | 0.484 | 4.460 | |
C | 33.475 | 2 | 1.904 | 4.460 | |
D | 9.658 | 2 | 0.549 | 4.460 | |
Error | 70.34 | 8 |
Sample (#) | Factor A Wcore:Wwall | Factor B Emulsifier Concentration (%) | Factor C Temperature (°C) | Factor D Time (h) | Coverage Rate (%) | Standard Deviation |
---|---|---|---|---|---|---|
1 | 0.6:1 | 1 | 50 | 1.0 | 11.0 | 0.8 |
2 | 0.6:1 | 2 | 60 | 1.5 | 14.0 | 1.2 |
3 | 0.6:1 | 3 | 70 | 2.0 | 10.0 | 0.8 |
4 | 0.8:1 | 1 | 60 | 2.0 | 6.0 | 1.3 |
5 | 0.8:1 | 2 | 70 | 1.0 | 10.0 | 0.9 |
6 | 0.8:1 | 3 | 50 | 1.5 | 5.0 | 0.8 |
7 | 1:1 | 1 | 70 | 1.5 | 7.0 | 0.7 |
8 | 1:1 | 2 | 50 | 2.0 | 8.0 | 0.3 |
9 | 1:1 | 3 | 60 | 1.0 | 6.0 | 1.1 |
Mean 1 | 11.667 | 8.000 | 8.000 | 9.000 | ||
Mean 2 | 7.000 | 10.667 | 8.667 | 8.667 | ||
Mean 3 | 7.000 | 7.000 | 9.000 | 8.000 | ||
Range | 4.667 | 3.667 | 1.000 | 1.000 | ||
Factor primary and secondary levels | A > B > C = D | |||||
Optimal decision | A1 B2 C3 D1 |
Factors | Sum of Squared Deviations | Degrees of Freedom | Fratio | Fcritical Value | Significance |
---|---|---|---|---|---|
A | 43.556 | 2 | 2.554 | 4.460 | |
B | 21.556 | 2 | 1.264 | 4.460 | |
C | 1.556 | 2 | 0.091 | 4.460 | |
D | 1.556 | 2 | 0.091 | 4.460 | |
Error | 68.22 | 8 |
Sample (#) | Wcore:Wwall | Yield Rate (%) | Standard Deviation for Yield Rate | Coverage Rate (%) | Standard Deviation for Coverage Rate |
---|---|---|---|---|---|
10 | 0.4:1 | 62.67 | 2.2 | 8.0 | 1.0 |
11 | 0.6:1 | 60.88 | 2.4 | 10.0 | 1.0 |
12 | 0.8:1 | 58.85 | 2.0 | 11.0 | 1.3 |
13 | 1:1 | 51.88 | 2.3 | 7.0 | 1.0 |
14 | 1.2:1 | 50.24 | 2.2 | 9.0 | 0.9 |
Sample (#) | Gloss (GU) | ||
---|---|---|---|
20° | 60° | 85° | |
0 | 5.97 | 18.53 | 39.57 |
10 | 1.67 | 5.83 | 1.02 |
11 | 2.03 | 7.07 | 1.50 |
12 | 2.47 | 8.07 | 2.10 |
13 | 1.43 | 5.23 | 1.07 |
14 | 1.60 | 6.33 | 0.80 |
Sample (#) | L1 | a1 | b1 | L2 | a2 | b2 | ΔE |
---|---|---|---|---|---|---|---|
0 | 84.30 | 1.35 | 5.41 | 84.65 | 1.25 | 5.70 | - |
10 | 75.15 | 1.95 | 8.55 | 75.45 | 1.95 | 8.25 | 9.63 |
11 | 75.50 | 2.41 | 10.20 | 75.30 | 2.40 | 10.3 | 10.28 |
12 | 76.50 | 3.65 | 9.75 | 76.75 | 3.50 | 9.85 | 9.21 |
13 | 73.75 | 3.55 | 12.51 | 73.65 | 3.55 | 12.70 | 13.07 |
14 | 75.25 | 3.35 | 11.95 | 75.25 | 3.35 | 11.65 | 11.33 |
Sample (#) | Liquid Cooling Resistance Level (Grade) | ||
---|---|---|---|
10% Citric Acid Solution | Ethanol | Detergent | |
0 | 2 | 3 | 4 |
10 | 1 | 2 | 2 |
11 | 1 | 2 | 2 |
12 | 1 | 2 | 2 |
13 | 1 | 2 | 1 |
14 | 1 | 2 | 1 |
Sample (#) | Elongation at Break (%) | Roughness (μm) |
---|---|---|
0 | 23.85 | 0.201 |
10 | 9.98 | 2.511 |
11 | 11.61 | 2.107 |
12 | 15.68 | 3.407 |
13 | 10.88 | 4.269 |
14 | 9.17 | 4.726 |
Sample (#) | Average Recovered Colony Count (CFU/piece) | Antibacterial Rate (%) | Standard Deviation | |||
---|---|---|---|---|---|---|
Escherichia coli | Staphylococcus aureus | Escherichia coli | Staphylococcus aureus | Escherichia coli | Staphylococcus aureus | |
0 | 383 | 367 | - | - | - | - |
10 | 224 | 242 | 41.51 | 34.10 | 2.3 | 1.6 |
11 | 231 | 231 | 39.69 | 37.06 | 1.1 | 1.3 |
12 | 219 | 198 | 42.82 | 46.05 | 1.8 | 1.5 |
13 | 238 | 204 | 37.86 | 44.41 | 1.5 | 1.5 |
14 | 241 | 223 | 37.07 | 39.24 | 1.9 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, X. Preparation of Toddalia asiatica (L.) Lam. Extract Microcapsules and Their Effect on Optical, Mechanical and Antibacterial Performance of Waterborne Topcoat Paint Films. Coatings 2024, 14, 655. https://doi.org/10.3390/coatings14060655
Wang Y, Yan X. Preparation of Toddalia asiatica (L.) Lam. Extract Microcapsules and Their Effect on Optical, Mechanical and Antibacterial Performance of Waterborne Topcoat Paint Films. Coatings. 2024; 14(6):655. https://doi.org/10.3390/coatings14060655
Chicago/Turabian StyleWang, Ying, and Xiaoxing Yan. 2024. "Preparation of Toddalia asiatica (L.) Lam. Extract Microcapsules and Their Effect on Optical, Mechanical and Antibacterial Performance of Waterborne Topcoat Paint Films" Coatings 14, no. 6: 655. https://doi.org/10.3390/coatings14060655
APA StyleWang, Y., & Yan, X. (2024). Preparation of Toddalia asiatica (L.) Lam. Extract Microcapsules and Their Effect on Optical, Mechanical and Antibacterial Performance of Waterborne Topcoat Paint Films. Coatings, 14(6), 655. https://doi.org/10.3390/coatings14060655