Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Nanoparticles in Dentistry
2.1. Definition of Nanoparticles
2.2. Nanotechnology
2.3. Design of Nanoparticles
2.3.1. Top-Down Approach
2.3.2. Bottom-Up Approach
3. Properties of Nanoparticles
3.1. Morphological Properties
3.1.1. Size
3.1.2. Shapes of Nanoparticles
- One-dimensional (1D) NPs include nanotubes, nanowires, and nanofilaments.
- Two-dimensional (2D) NPs are found as sheets or disks.
- Three-dimensional (3D) NPs can take non-spherical shapes [73].
3.1.3. Interaction with Macrophages
3.1.4. Structural Characterization of Nanoparticles
- X-ray diffraction (XRD);
- Energy dispersive X-ray spectroscopy (EDX);
- X-ray photoelectron spectroscopy (XPS);
- Infrared spectroscopy (IR);
- Raman spectroscopy;
- Brunauer–Emmett–Teller (BET) surface analysis;
- Zetasizer analysis;
- TEM;
- SEM.
3.1.5. Specific Surface Area
3.2. Chemical Properties
3.2.1. Charge
3.2.2. (Bio)Chemical Surface
3.2.3. Biocompatibility
3.2.4. Stability
3.3. Magnetic Properties
3.3.1. Targeting
3.3.2. Optical Properties
4. Categories of Nanoparticles in Dental Applications
4.1. Antimicrobial Nanoparticles
4.1.1. Types (e.g., Silver, Zinc Oxide)
4.1.2. Mechanisms of Action and Applications in Preventing Infections
- Membrane disruption: antimicrobial NPs can bind to the microbial cell membrane, leading to structural damage and eventual cell lysis.
4.2. Therapeutic Nanoparticles
Drug Delivery Systems and Their Role in Pain Management and Healing
- Enhanced bioavailability: NPs improve the solubility and stability of therapeutic agents, allowing for lower doses and minimizing systemic toxicity [127].
- Controlled release: NPs can be engineered to release drugs at a controlled rate, providing sustained therapeutic effects over time [128].
- Pain management: for dental procedures, therapeutic NPs can deliver analgesics directly to the site of pain, enhancing pain relief while minimizing the need for systemic medication [129].
4.3. Material Property-Improving Nanoparticles
- Mechanical strength: NPs such as silica and alumina can significantly enhance the mechanical strength of composite resins and dental cements, making them more durable under occlusal forces [130].
- Wear resistance: the addition of ceramic NPs improves the wear resistance of restorative materials, prolonging their lifespan and maintaining their functionality [131].
5. Current Applications and Innovations
5.1. Dental Products Incorporating Nanoparticles
5.1.1. Dental Composites
5.1.2. Antimicrobial Agents
5.1.3. Endodontic Materials
5.1.4. Dental Implants
5.1.5. Amalgam
5.1.6. Glass Ionomer Cements (GICs)
5.1.7. Dental Prosthetics
5.1.8. Periodontal Applications
5.1.9. Whitening Agents
5.1.10. Enamel Repair and Remineralization
5.2. Highlight Recent Advancements in Nanoparticle Technology
5.2.1. Targeted Drug Delivery
5.2.2. Smart Biomaterials
5.2.3. Enhanced Imaging Techniques
6. Future Directions and Challenges
6.1. Potential Future Applications of Nanoparticles in Dentistry
6.1.1. Regenerative Dentistry
6.1.2. Personalized Dental Care
6.1.3. Nanoparticle-Based Vaccines
6.2. Consideration of Risks and Regulatory Challenges in Their Use
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yakop, F.; Abd Ghafar, S.A.; Yong, Y.K.; Saiful Yazan, L.; Mohamad Hanafiah, R.; Lim, V.; Eshak, Z. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 2018, 46, 131–139. [Google Scholar] [CrossRef]
- Gronwald, B.; Kozłowska, L.; Kijak, K.; Lietz-Kijak, D.; Skomro, P.; Gronwald, K.; Gronwald, H. Nanoparticles in Dentistry—Current Literature Review. Coatings 2023, 13, 102. [Google Scholar] [CrossRef]
- Moraes, G.; Zambom, C.; Siqueira, W.L. Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals 2021, 14, 752. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Joshi, C.P.; Bapat, P.; Chaubal, T.V.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The Use of Nanoparticles as Biomaterials in Dentistry. Drug Discov. Today 2019, 24, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Pecci-Lloret, M.P.; Gea-Alcocer, S.; Murcia-Flores, L.; Rodríguez-Lozano, F.J.; Oñate-Sánchez, R.E. Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics 2024, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G.V.; Jolivet, J.-P.; Wiesner, M.R. Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- McNamara, K.; Tofail, S.A. Nanoparticles in Biomedical Applications. Adv. Phys. X 2017, 2, 54–88. [Google Scholar] [CrossRef]
- Ghadiri, M.; Stokes, R. Nanotechnology in Dentistry: A Comprehensive Review. Materials 2020, 13, 2700. [Google Scholar] [CrossRef]
- An, K.; Somorjai, G.A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012, 4, 1512–1524. [Google Scholar] [CrossRef]
- Arms, L.; Smith, D.W.; Flynn, J.; Palmer, W.; Martin, A.; Woldu, A.; Hua, S. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front. Pharmacol. 2018, 9, 802. [Google Scholar] [CrossRef]
- ElSheikh, S.K.; Eid, E.G.; Abdelghany, A.M.; Abdelaziz, D. Physical/Mechanical and Antibacterial Properties of Composite Resin Modified with Selenium Nanoparticles. BMC Oral Health 2024, 24, 1245. [Google Scholar] [CrossRef] [PubMed]
- Mercan, D.A.; Niculescu, A.G.; Grumezescu, A.M. Nanoparticles for Antimicrobial Agents Delivery—An Up-to-Date Review. Int. J. Mol. Sci. 2022, 23, 13862. [Google Scholar] [CrossRef] [PubMed]
- Capuano, N.; Amato, A.; Dell’Annunziata, F.; Giordano, F.; Folliero, V.; Di Spirito, F.; More, P.R.; De Filippis, A.; Martina, S.; Amato, M.; et al. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics 2023, 12, 1690. [Google Scholar] [CrossRef] [PubMed]
- Bossù, M.; Saccucci, M.; Salucci, A.; Di Giorgio, G.; Bruni, E.; Uccelletti, D.; Sarto, M.S.; Familiari, G.; Relucenti, M.; Polimeni, A. Enamel Remineralization and Repair Results of Biomimetic Hydroxyapatite Toothpaste on Deciduous Teeth: An Effective Option to Fluoride Toothpaste. J. Nanobiotechnol. 2019, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, C.; Kılıç, E.; Kurt, K.; Özdemir, H.; Korkmaz, A. Nanoparticles for Dental Implant Applications: Enhancing Osseointegration. Mater. Today Proc. 2021, 46, 3469–3472. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Bermudez, J.; Dávila-Sánchez, A.; Buvinic, S.; Hernández-Moya, N.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Biological, Mechanical, and Adhesive Properties of Universal Adhesives Containing Zinc and Copper Nanoparticles. J. Dent. 2019, 82, 45–55. [Google Scholar] [CrossRef]
- Ekrikaya, S.; Yilmaz, E.; Arslan, S.; Karaaslan, R.; Ildiz, N.; Celik, C.; Ocsoy, I. Dentin Bond Strength and Antimicrobial Activities of Universal Adhesives Containing Silver Nanoparticles Synthesized with Rosa canina Extract. Clin. Oral Investig. 2023, 27, 6891–6902. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Pramanik, K.; Mohapatra, A.; Dandapat, S.; Sinha, A.; Patra, S. Nanoparticle-based targeted drug delivery systems: Applications in cancer therapy. Nanomaterials 2020, 10, 883. [Google Scholar]
- Chen, Z.; Zhang, H.; Yang, X.; Zhang, Y.; Zhu, G.; Yang, J.; Zhang, M. Multifunctional nanoparticles for cancer diagnosis and therapy. Front. Chem. 2020, 8, 212. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Huang, X.; Yan, H.; Gao, H.; Liu, Y.; Wu, Y.; Chen, Z.; Wang, Y. The application of nanoparticles in oral drug delivery systems. Int. J. Nanomed. 2021, 16, 1233–1248. [Google Scholar]
- Sadeghi, A.; Dastjerdi, R.; Asgarian, A.; Shafiei, M.; Moudi, M.; Shahmoradi, K. Nanotechnology in dentistry: A review of the current literature. Int. J. Dent. 2020, 2020, 4568019. [Google Scholar]
- Ramesh, R.; Babu, R.S.; Manickam, P.; Shyamaladevi, R.; Raja, V.S. Recent advancements in nanoparticle-based drug delivery systems for cancer therapy: A review. Biotechnol. Rep. 2020, 25, e00424. [Google Scholar]
- Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology 2008, 17, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J. Nanoparticles—A Historical Perspective. Int. J. Pharm. 2007, 331, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Leso, V.; Fontana, L. Esposizione a Nanoparticelle nei Laboratori di Ricerca [Nanoparticle Exposure in Research Laboratories]. G. Ital. Med. Lav. Ergon. 2019, 41, 349–353. [Google Scholar]
- Rahman, A.; Ghosh, M. Nanoparticles and Their Applications in Dental Materials: An Overview. Nanomaterials 2021, 11, 674. [Google Scholar] [CrossRef]
- Niu, L.N.; Zhang, Y.; Tsoi, J.K.H.; Matinlinna, J.P. Nanotechnology in Dental Applications. J. Dent. Res. 2019, 98, 337–347. [Google Scholar]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural Inorganic Nanoparticles—Formation, Fate, and Toxicity in the Environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Ghosh, A.; Banerjee, S.; Paul, P. A Review on the Use of Nanoparticles for Dental Tissue Regeneration. J. Biomater. Sci. Polym. Ed. 2020, 31, 797–816. [Google Scholar]
- Zhang, J.; Wang, Y.; Zhao, Y.; Chen, H. The Role of Nanoparticles in Restorative Dentistry. Front. Mater. 2021, 8, 583934. [Google Scholar]
- Xu, X.; Liu, Y.; Li, J.; Wang, Y. Recent Advances in Protein-Repellent Adhesives Using Nanotechnology. J. Adhes. Sci. Technol. 2021, 35, 490–507. [Google Scholar]
- Hasan, S. A Review on Nanoparticles: Their Synthesis and Types. Res. J. Recent Sci. 2015, 2277, 2502. [Google Scholar]
- Tuncer, M.; Büyükyılmaz, T.; Tütüncü, M.; Korkmaz, Y. Nanoparticles in Endodontics: Current Trends and Future Directions. J. Endod. 2021, 47, 1204–1216. [Google Scholar] [CrossRef]
- Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of Gold Nanoparticles in Biomedical and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Wang, Y.; Yang, X. Nanotechnology for Controlled Drug Delivery in Dental Treatments. Dent. Mater. J. 2019, 38, 80–86. [Google Scholar] [CrossRef]
- Naguib, G.; Maghrabi, A.A.; Mira, A.I.; Mously, H.A.; Hajjaj, M.; Hamed, M.T. Influence of Inorganic Nanoparticles on Dental Materials’ Mechanical Properties: A Narrative Review. BMC Oral Health 2023, 23, 897. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, e1802309. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann. Biomed. Eng. 2016, 44, 2049–2061. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EU) 2022/1089 of 14 June 2022 on Defining Nanomaterials. Off. J. Eur. Union 2022, L176, 1–4. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022H0614%2801%29 (accessed on 23 December 2024).
- Size-Comparison-Bio-Nanoparticles. Size Comparison of Bio-Nanoparticles: Nanometer Scale Comparison and Nanoparticle Size Comparison Nanotechnology Chart Ruler. Nanotechnology Chart Ruler. 2017. Available online: https://www.wichlab.com/nanometer-scale-comparison-nanoparticle-size-comparison-nanotechnology-chart-ruler-2/ (accessed on 23 December 2024).
- Ghosh, A.; Banerjee, S. Nanoparticles in Medicine: Current Status and Future Directions. Molecules 2019, 24, 747. [Google Scholar] [CrossRef]
- Baran, I.; Alavi, S.; Baghery, A.; Vatanpour, M. Potential Toxicity of Nanoparticles in Dental Applications: A Review. Int. J. Mol. Sci. 2020, 21, 5003. [Google Scholar] [CrossRef]
- Grande, F.; Tucci, P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef]
- Khan, Y.; Ali, S.; Zia, A.; Murtaza, G.; Ali, I.; Khan, M.N. Antimicrobial Nanoparticles in Dental Applications. Crit. Rev. Microbiol. 2020, 46, 421–438. [Google Scholar]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [PubMed]
- Meena, K.; Kumar, V.; Kumar, A.; Yadav, A.; Kumar, D. Hydroxyapatite Nanoparticles for Remineralization of Dental Enamel. Mater. Sci. Eng. C 2020, 110, 110704. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Introduction to Nanotechnology. In Nanotechnology for Environmental Decontamination; Springer: New York, NY, USA, 2013. [Google Scholar]
- Takallu, M.; Mohammadi, M.; Hajikhani, M. Advances in Nanoparticles for Endodontic Regeneration. J. Nanomater. Dent. 2024, 12, 85–97. [Google Scholar]
- Hayat, K.; Malik, A.; Khan, A. Role of nanoparticles in combating oral biofilms. Int. J. Nanomed. 2022, 17, 521–533. [Google Scholar]
- Zhang, N.; Ma, J.; Li, Y. Remineralization of enamel with nanohydroxyapatite and its role in dentistry. J. Dent. Sci. 2018, 13, 170–180. [Google Scholar] [CrossRef]
- Jandt, K.D.; Watts, D.C. Nanotechnology in dentistry: Present and future perspectives. J. Dent. Res. 2020, 99, 1242–1249. [Google Scholar]
- Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: London, UK, 2004. [Google Scholar]
- Jain, K.K. Nanobiotechnology and its applications. Pharm. Nanotechnol. 2012, 4, 215–229. [Google Scholar]
- Banerjee, A.; Dutta, K.; Panda, A. Nanomaterials in dentistry: Applications and toxicological risks. Mater. Sci. Eng. C 2022, 125, 112086. [Google Scholar] [CrossRef]
- Kaur, A.; Thombre, R. Nanoparticle-based drug delivery systems in dentistry. J. Cont. Release 2021, 330, 42–57. [Google Scholar] [CrossRef]
- AlKahtani, R. Nanotechnology applications in dentistry: A review of recent advances. Saudi Dent. J. 2018, 30, 107–116. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology, 4th ed.; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Altammar, K. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- La, D.D.; Truong, T.N.; Pham, T.Q.; Vo, H.T.; Tran, N.T.; Nguyen, T.A.; Nguyen, T.B.; Pham, H.D.; Tran, V.T.; Nguyen, D.D. Scalable Fabrication of Modified Graphene Nanoplatelets as an Effective Additive for Engine Lubricant Oil. Nanomaterials 2020, 10, 877. [Google Scholar] [CrossRef]
- Subhan, M.A.; Alharthi, A.I.; Kumar, M.; Bhowmik, S. Nanoparticle fabrication using various approaches. Adv. Colloid Sci. 2022, 83, 69–94. [Google Scholar]
- Baig, U.; Kamal, S.; Gondal, M.A. Top-down and bottom-up approaches for the synthesis of nanomaterials: A review. Nanomater. Sci. Eng. 2021, 10, 224–230. [Google Scholar]
- Ahmed, K.; Rashid, A.; Numan, A. Recent trends in nanoparticle synthesis via top-down approaches. J. Nanotechnol. 2021, 22, 331–345. [Google Scholar]
- Kalaiselvan, S.; Malek, M.; Al-Abed, S. Advances in top-down nanoparticle fabrication techniques: Applications and challenges. Int. J. Nanotechnol. 2020, 17, 101–110. [Google Scholar]
- Sinha, R.; Shukla, P.; Singh, A. Top-down nanofabrication techniques: Advancements and applications. J. Appl. Nanotechnol. 2022, 13, 58–75. [Google Scholar]
- Vijayaram, T.R.; Sundaresan, R.; Shanmugam, K. Nanoparticle synthesis: Bottom-up approaches and their advantages in nanotechnology. J. Nanomater. Res. 2023, 18, 114–126. [Google Scholar]
- Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 66, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sarin, H.; Kanevsky, A.S.; Wu, H.; Brimacombe, K.R.; Fung, S.H.; Sousa, A.A.; Auh, S.; Wilson, C.M.; Sharma, K.; Aronova, M.A.; et al. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J. Transl. Med. 2009, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Sm, P.; Qin, Y.; Jia, Z.; Wang, Y.; Tian, H. Clearance and biodistribution of nanoparticles in vivo. Pharm. Biomed. Sci. 2001, 15, 337–343. [Google Scholar]
- Xu, M.; Zhao, X.; Huang, Y.; Yang, Y. Size-dependent biodistribution and clearance of nanoparticles. Int. J. Nanomed. 2023, 18, 2279–2290. [Google Scholar]
- Gao, X.; Yin, L.; Zhang, Y.; Yuan, Y.; Wang, Y.; Li, Y. Toxicity of 8 nm and 37 nm silica nanoparticles in murine macrophages. J. Hazard. Mater. 2011, 195, 228–233. [Google Scholar]
- Zein, R.; Sharrouf, W.; Selting, K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J. Oncol. 2020, 2020, 5194780. [Google Scholar] [CrossRef]
- Zein, I.; Mosa, A.; Alkhazaleh, M. Nanoparticle shape and its influence on cellular uptake and internalization. J. Nanotechnol. 2020, 15, 125–134. [Google Scholar]
- Zhang, L.; Chen, K.; Wang, Y. The role of nanoparticle morphology in cellular uptake. Adv. Drug Deliv. Rev. 2015, 95, 57–67. [Google Scholar] [CrossRef]
- Jarai, B.M.; Fromen, C.A. Nanoparticle Internalization Promotes the Survival of Primary Macrophages. Adv. Nanobiomed Res. 2022, 2, 2100127. [Google Scholar] [CrossRef] [PubMed]
- Auclair, K.; Gagné, F. Toxicity of silver nanoparticles: Influence of morphology. Environ. Sci. Pollut. Res. 2022, 29, 123–134. [Google Scholar]
- Champion, J.A.; Mitragotri, S. Role of nanoparticle size, shape, and surface chemistry in oral drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1032–1045. [Google Scholar]
- Shukla, R.; Cerniglia, G.; Wang, H. Impact of nanoparticle geometry on cellular uptake and cytotoxicity. Int. J. Nanomed. 2013, 8, 1897–1913. [Google Scholar]
- Lu, J.; Liong, M.; Zink, J.I.; Tamanoi, F. Biocompatible silica nanoparticles for cancer therapy. Small 2010, 6, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Albarwani, S.; Beegam, S.; Yuvaraju, P.; Yasin, J.; Attoub, S.; Ali, B.H. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int. J. Nanomed. 2014, 9, 2779–2789. [Google Scholar] [CrossRef]
- Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 2017, 34, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Greulich, C.; Kittler, S.; Epple, M.; Muhr, G.; Köller, M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch. Surg. 2009, 394, 495–502. [Google Scholar] [CrossRef]
- Yazdimamaghani, M.; Moos, P.J.; Dobrovolskaia, M.A.; Ghandehari, H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine 2019, 16, 106–125. [Google Scholar] [CrossRef]
- Nejati, K.; Dadashpour, M.; Gharibi, T.; Mellatyar, H.; Akbarzadeh, A. Biomedical applications of functionalized gold nanoparticles: A review. J. Cluster Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Fröhlich, E. The role of surface charge in the interactions of nanoparticles with biological systems. Nanotoxicology 2012, 6, 120–130. [Google Scholar]
- Gwinn, M.R.; Vallyathan, V. Nanoparticles: Health effects—Pros and cons. Environ. Health Perspect. 2006, 114, 1818–1825. [Google Scholar] [CrossRef]
- Sun, H.; Jia, J.; Jiang, C.; Zhai, S. Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine. Int. J. Mol. Sci. 2018, 19, 754. [Google Scholar] [CrossRef] [PubMed]
- Kopac, T. The influence of surface charge on the biological interactions of nanoparticles. J. Nanobiotechnol. 2021, 19, 43. [Google Scholar]
- Lundqvist, M.; Stigler, J.; Elia, G.; Dawson, K. The evolution of the protein corona around nanoparticles. Nat. Nanotechnol. 2008, 3, 392–397. [Google Scholar]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Chauhan, N.; Othman, S.F.; Khalilzad-Sharghi, V.; Ebeling, M.C.; Khan, S.; Jaggi, M.; Chauhan, S.C. Implications of Protein Corona on Physico-Chemical and Biological Properties of Magnetic Nanoparticles. Biomaterials 2015, 46, 1–12. [Google Scholar] [CrossRef]
- Nienhaus, K.; Nienhaus, G.U. Mechanistic Understanding of Protein Corona Formation Around Nanoparticles: Old Puzzles and New Insights. Small 2023, 19, 2301663. [Google Scholar] [CrossRef]
- Ghosh, G.; Panicker, L. Protein–Nanoparticle Interactions and a New Insight. Soft Matter 2021, 17, 3855–3875. [Google Scholar] [CrossRef]
- Del Pino, P.; Pelaz, B.; Zhang, Q.; Maffre, P.; Nienhaus, G.U.; Parak, W.J. Protein Corona Formation Around Nanoparticles–From the Past to the Future. Mater. Horiz. 2014, 1, 301–313. [Google Scholar] [CrossRef]
- García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In Vivo Formation of Protein Corona on Gold Nanoparticles. The Effect of Their Size and Shape. Nanoscale 2018, 10, 1256–1264. [Google Scholar] [CrossRef]
- Lynch, I.; Dawson, K.A. Protein–Nanoparticle Interactions. In Nano-Enabled Medical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 231–250. [Google Scholar]
- Kurtz-Chalot, A.; Villiers, C.; Pourchez, J.; Boudard, D.; Martini, M.; Marche, P.N.; Cottier, M.; Forest, V. Impact of Silica Nanoparticle Surface Chemistry on Protein Corona Formation and Consequential Interactions with Biological Cells. Mater. Sci. Eng. C 2017, 75, 16–24. [Google Scholar] [CrossRef]
- Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ratner, B.D. The Biocompatibility of Implant Materials. In Host Response to Biomaterials; Academic Press: Cambridge, MA, USA, 2015; pp. 37–51. [Google Scholar]
- Kaur, J.; Tikoo, K. Evaluating Cell Specific Cytotoxicity of Differentially Charged Silver Nanoparticles. Food Chem. Toxicol. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Wang, W.; Morrell-Falvey, J.L.; Gu, B.; Doktycz, M.J. Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir 2012, 28, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- Han, D.W.; Woo, Y.I.; Lee, M.H.; Lee, J.H.; Lee, J.; Park, J.C. In-Vivo and In-Vitro Biocompatibility Evaluations of Silver Nanoparticles with Antimicrobial Activity. J. Nanosci. Nanotechnol. 2012, 12, 5205–5209. [Google Scholar] [CrossRef] [PubMed]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef] [PubMed]
- Malvindi, M.A.; Matteis, V.D.; Galeone, A.; Brunetti, V.; Anyfantis, G.C.; Athanassiou, A.; Cingolani, R.; Pompa, P.P. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS ONE. 2014, 9, e85835. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Raj, A.; Tseng, T.H.; Xiao, H.; Nguyen, R.; Mohammed, F.S.; Halder, S.; Xu, M.; Wu, M.J.; Bao, S.; et al. Biocompatibility of Nanomaterials and Their Immunological Properties. Biomed. Mater. 2021, 16, 042005. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.; Haes, A.J. Stability of nanoparticles: Fundamentals and applications. Nanomaterials 2019, 9, 30. [Google Scholar]
- Widoniak, J.; Eiden-Assmann, S.; Maret, G. Silver Particles Tailoring of Shapes and Sizes. Colloids Surf. A Physicochem. Eng. Asp. 2005, 270, 340–344. [Google Scholar] [CrossRef]
- Pinto, V.V.; Ferreira, M.J.; Silva, R.; Santos, H.A.; Silva, F.; Pereira, C.M. Long-Time Effect on the Stability of Silver Nanoparticles in Aqueous Medium: Effect of the Synthesis and Storage Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 19–25. [Google Scholar] [CrossRef]
- Korshed, P.; Li, L.; Ngo, D.-T.; Wang, T. Effect of Storage Conditions on the Long-Term Stability of Bactericidal Effects for Laser Generated Silver Nanoparticles. Nanomaterials 2018, 8, 218. [Google Scholar] [CrossRef]
- Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J.M. Stable Silver Colloidal Dispersions Using Short Chain Polyethylene Glycol. Colloids Surf. Physicochem. Eng. Asp. 2007, 303, 184–190. [Google Scholar] [CrossRef]
- Mahato, K.; Nagpal, S.; Shah, M.A.; Srivastava, A.; Maurya, P.K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold Nanoparticle Surface Engineering Strategies and Their Applications in Biomedicine and Diagnostics. 3 Biotech 2019, 9, 57. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Lv, Y.; Yu, C.; Li, X.; Bao, H.; Song, S.; Cao, X.; Lin, H.; Huang, J.; Zhang, Z. ROS-Activatable Nanocomposites for CT Imaging Tracking and Antioxidative Protection of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis Therapy. J. Control. Release. 2023, 357, 249–263. [Google Scholar] [CrossRef]
- Vatta, L.L.; Sanderson, R.D.; Koch, K.R. Magnetic Nanoparticles: Properties and Potential Applications. Pure Appl. Chem. 2006, 78, 1793–1801. [Google Scholar] [CrossRef]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to Metallic Nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.B.; Yao, J.N. Size Effects on the Optical Properties of Organic Nanoparticles. J. Am. Chem. Soc 2001, 123, 1434–1439. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Scholes, G.D. Controlling the Optical Properties of Inorganic Nanoparticles. Adv. Funct. Mater. 2008, 18, 1157–1172. [Google Scholar] [CrossRef]
- Khan, S.T.; Al-Khedhairy, A.A.; Musarrat, J. ZnO and TiO2 Nanoparticles as Novel Antimicrobial Agents for Oral Hygiene: A Review. J. Nanopart. Res. 2015, 17, 276. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Grenho, L.; Salgado, C.L.; Fernandes, M.H.; Monteiro, F.J.; Ferraz, M.P. Antibacterial Activity and Biocompatibility of Three-Dimensional Nanostructured Porous Granules of Hydroxyapatite and Zinc Oxide Nanoparticles—An In Vitro and In Vivo Study. Nanotechnology 2015, 26, 315101. [Google Scholar] [CrossRef] [PubMed]
- Lallo da Silva, B.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef]
- Liu, X.; Lu, B.; Fu, J.; Zhu, X.; Song, E.; Song, Y. Amorphous Silica Nanoparticles Induce Inflammation via Activation of NLRP3 Inflammasome and HMGB1/TLR4/MYD88/NF-kB Signaling Pathway in HUVEC Cells. J. Hazard. Mater. 2021, 404, 124050. [Google Scholar] [CrossRef]
- Gharpure, S.; Ankamwar, B. Synthesis and Antimicrobial Properties of Zinc Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 5977–5996. [Google Scholar] [CrossRef] [PubMed]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver Nanoparticles in Dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.V.; Patel, P.R.; Thorat-Gadgil, B.S.; Pandit, A.; Bohara, R.A. Biofilm Formation to Inhibition: Role of Zinc Oxide-Based Nanoparticles. Mater. Sci. Eng. C. 2020, 108, 110319. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pi, C.; Feng, X.; Hou, Y.; Zhao, L.; Wei, Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int. J. Nanomed. 2020, 15, 6295–6310. [Google Scholar] [CrossRef]
- Wang, J.J.; Sanderson, B.J.S.; Wang, H. Cytotoxicity and Genotoxicity of Ultrafine Crystalline SiO₂ Particulate in Cultured Human Lymphoblastoid Cells. Environ. Mol. Mutagen. 2007, 48, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mukherjee, S.; Mishra, M. Nanoparticles Used in Dentistry: A Review. J. Oral Biol. Craniofac. Res. 2018, 8, 58–67. [Google Scholar] [CrossRef]
- Yesil, Z.D.; Alapati, S.; Johnston, W.; Seghi, R.R. Evaluation of the Wear Resistance of New Nanocomposite Resin Restorative Materials. J. Prosthet. Dent. 2008, 99, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Silikas, N.; Masouras, K.; Satterthwaite, J.; Watts, D.C. Effect of Nanofillers on Adhesive and Aesthetic Properties of Dental Resin-Composites. Int. J. Nano Biomater. 2007, 1, 116–127. [Google Scholar] [CrossRef]
- De Souza, G.M. Nanoparticles in Restorative Materials. In Nanotechnology in Endodontics: Current and Potential Clinical Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 139–171. [Google Scholar]
- Jongrungsomran, S.; Pissuwan, D.; Yavirach, A.; Rungsiyakull, C.; Rungsiyakull, P. The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. J. Funct. Biomater. 2024, 15, 291. [Google Scholar] [CrossRef] [PubMed]
- Subramani, K.; Ahmed, W. Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Yusuf, J.; Sapuan, S.M.; Rashid, U.; Ilyas, R.A.; Hassan, M.R. Thermal, Mechanical, Thermo-Mechanical, and Morphological Properties of Graphene Nanoplatelets Reinforced Green Epoxy Nanocomposites. Polym. Compos. 2024, 45, 1998–2011. [Google Scholar] [CrossRef]
- Gkaliou, K. Developing Nanocomposites with Highly Aligned Nanoscale Reinforcement. Doctoral Dissertation, Cardiff University, Cardiff, Wales, 2021. [Google Scholar]
- Mallineni, S.K.; Sakhamuri, S.; Kotha, S.L.; AlAsmari, A.R.G.M.; AlJefri, G.H.; Almotawah, F.N.; Mallineni, S.; Sajja, R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering 2023, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Radzig, M.A.; Nadtochenko, V.A.; Koksharova, O.A.; Kiwi, J.; Lipasova, V.A.; Khmel, I.A. Antibacterial Effects of Silver Nanoparticles on Gram-Negative Bacteria: Influence on the Growth and Biofilm Formation, Mechanisms of Action. Colloids Surf. B Biointerfaces 2013, 102, 300–306. [Google Scholar] [CrossRef]
- Mandal, A.K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Parajuli, N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. Nanomaterials 2022, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications. Drug Discovery Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Farjami, A.; Dizaj, S.M.; Lotfipour, F. Nanoparticles for Antimicrobial Purposes in Endodontics: A Systematic Review of In Vitro Studies. Mater. Sci. Eng. C. 2016, 58, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.I.O.; Petrik, L.; Moodley, D.S.; Patel, N. Use of Antibacterial Nanoparticles in Endodontics. S. Afr. Dent. J. 2017, 72, 105–112. [Google Scholar]
- Parnia, F.; Yazdani, J.; Javaherzadeh, V.; Dizaj, S.M. Overview of Nanoparticle Coating of Dental Implants for Enhanced Osseointegration and Antimicrobial Purposes. J. Pharm. Pharm. Sci. 2017, 20, 148–160. [Google Scholar] [CrossRef]
- Tomsia, A.P.; Launey, M.E.; Lee, J.S.; Mankani, M.H.; Wegst, U.G.; Saiz, E. Nanotechnology Approaches for Better Dental Implants. Int. J. Oral Maxillofac. Implants 2011, 26, 25. [Google Scholar]
- Thomas, B.; Ramesh, A. Nanotechnology in Dental Implantology. In Nanomaterials in Dental Medicine; Springer Nature Singapore: Singapore, 2023; pp. 159–175. [Google Scholar]
- Tolou, N.B.; Fathi, M.H.; Monshi, A.; Mortazavi, V.S.; Shirani, F.; Mohammadi, M. The Effect of Adding TiO2 Nanoparticles on Dental Amalgam Properties. Iranian J. Mater. Sci. Eng. 2013, 10, 46–56. [Google Scholar]
- Rajih, A.K.; Al-Sultani, K.F.; Al-Kinani, M.A. Mechanical Properties Improvement of Dental Amalgam Using TiO2 and ZnO. Life Sci. J. 2015, 12, 86–90. [Google Scholar]
- Amin, F.; Rahman, S.; Khurshid, Z.; Zafar, M.S.; Sefat, F.; Kumar, N. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. Materials 2021, 14, 6260. [Google Scholar] [CrossRef] [PubMed]
- Nikkerdar, N.; Golshah, A.; Mobarakeh, M.S.; Fallahnia, N.; Azizie, B.; Shoohanizad, E. Recent Progress in Application of Zirconium Oxide in Dentistry. J. Med. Pharm. Chem. Res. 2024, 6, 1042–1071. [Google Scholar]
- Basmacı, F.; Avukat, E.N.; Akay, C.; Aykent, F. Effect of Graphene Oxide Incorporation on the Strength of Denture Repair Resin. ECS J. Solid State Sci. Technol. 2024, 13, 061004. [Google Scholar] [CrossRef]
- Kachoei, M.; Divband, B.; Tabriz, F.D.; Helali, Z.N.; Esmailzadeh, M. A Comparative Study of Antibacterial Effects of Mouthwashes Containing Ag/ZnO or ZnO Nanoparticles with Chlorhexidine and Investigation of Their Cytotoxicity. Nanomed. J. 2018, 5, 102–110. [Google Scholar]
- Lima, F.V.; Mendes, C.; Zanetti-Ramos, B.G.; Nandi, J.K.; Cardoso, S.G.; Bernardon, J.K.; Silva, M.A.S. Carbamide Peroxide Nanoparticles for Dental Whitening Application: Characterization, Stability and In Vivo/In Situ Evaluation. Colloids Surf. B Biointerfaces 2019, 179, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Kunzelmann, K.-H. Biomimetic Tooth-Whitening Effect of Hydroxyapatite-Containing Mouthrinses after Long-Term Simulated Oral Rinsing. Am. J. Dent. 2021, 34, 307–312. [Google Scholar]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study. J. Funct. Biomater. 2024, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Javidi, M.; Zarei, M.; Naghavi, N.; Mortazavi, M.; Nejat, A.H. Zinc Oxide Nano-Particles as Sealer in Endodontics and Its Sealing Ability. Contemp. Clin. Dent. 2014, 5, 20–24. [Google Scholar] [PubMed]
- Montoya, C.; Roldan, L.; Yu, M.; Valliani, S.; Ta, C.; Yang, M.; Orrego, S. Smart Dental Materials for Antimicrobial Applications. Bioact. Mater. 2023, 24, 1–19. [Google Scholar] [CrossRef]
- Joseph, B. Nanotechnology in Oral and Dental Diagnosis. In Nanomaterials in Dental Medicine; Springer Nature Singapore: Singapore, 2023; pp. 33–49. [Google Scholar]
- Makvandi, P.; Josic, U.; Delfi, M.; Pinelli, F.; Jahed, V.; Kaya, E.; Ashrafizadeh, M.; Zarepour, A.; Rossi, F.; Zarrabi, A.; et al. Drug Delivery (Nano) Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Adv. Sci. 2021, 8, 2004014. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Fallica, A.N.; Virzì, N.; Kesharwani, P.; Pittalà, V.; Greish, K. The Promise of Nanotechnology in Personalized Medicine. J. Pers. Med. 2022, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, P.S.; Néstor, M.M.; David, Q.G. Nanoparticles as Dental Drug-Delivery Systems. In Nanobiomaterials in Clinical Dentistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 567–593. [Google Scholar]
- Bapat, R.A.; Parolia, A.; Chaubal, T.; Dharamadhikari, S.; Abdulla, A.M.; Sakkir, N.; Kesharwani, P. Recent Update on Potential Cytotoxicity, Biocompatibility, and Preventive Measures of Biomaterials Used in Dentistry. Biomater. Sci. 2021, 9, 3244–3283. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Zhai, S.; Cheng, Y.; Liu, J.; Liu, B. In Vitro Cytotoxicity of Silver Nanoparticles in Primary Rat Hepatic Stellate Cells. Mol. Med. Rep. 2013, 8, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Neagu, C.S.; Cojocariu, A.C.; Zaharia, C.; Romînu, M.; Negruţiu, M.L.; Duma, V.F.; Sinescu, C. The Evaluation of Dental Adhesives Augmented with Magnetic Nanoparticles. In Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology; SPIE: Bellingham, WA, USA, 2022; Volume 12170, pp. 127–135. [Google Scholar]
- Kim, J.E.; Shin, J.Y.; Cho, M.H. Magnetic Nanoparticles: An Update of Application for Drug Delivery and Possible Toxic Effects. Arch. Toxicol. 2012, 86, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.M.; Pushpalatha, C.; Anandakrishna, L. Magnetic Nanoparticles: A Novel Adjunct for Dentistry. Mater. Today Proc. 2022, 50, 173–180. [Google Scholar] [CrossRef]
- Karunakaran, H.; Krithikadatta, J.; Doble, M. Local and Systemic Adverse Effects of Nanoparticles Incorporated in Dental Materials—A Critical Review. Saudi Dent. J. 2024, 36, 158–167. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgi, R.; Doumandji, Z.; Cuevas-Suárez, C.E.; Ben Ammar, T.; Laporte, C.; Kharouf, N.; Haikel, Y. Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings 2025, 15, 33. https://doi.org/10.3390/coatings15010033
Bourgi R, Doumandji Z, Cuevas-Suárez CE, Ben Ammar T, Laporte C, Kharouf N, Haikel Y. Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings. 2025; 15(1):33. https://doi.org/10.3390/coatings15010033
Chicago/Turabian StyleBourgi, Rim, Zahra Doumandji, Carlos Enrique Cuevas-Suárez, Teissir Ben Ammar, Chloé Laporte, Naji Kharouf, and Youssef Haikel. 2025. "Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review" Coatings 15, no. 1: 33. https://doi.org/10.3390/coatings15010033
APA StyleBourgi, R., Doumandji, Z., Cuevas-Suárez, C. E., Ben Ammar, T., Laporte, C., Kharouf, N., & Haikel, Y. (2025). Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. Coatings, 15(1), 33. https://doi.org/10.3390/coatings15010033