Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Bone Substitute
2.2. SEM
2.3. Micro-CT
2.4. Porosimetry
3. Results
3.1. SEM
3.2. Micro-CT
3.3. Porosimetry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, G.; Blaauw, D.; Chang, S. A Comparative Study of Two Bone Graft Substitutes-InterOss® Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 1, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Khayatan, D.; Bagherzadeh Oskouei, A.; Alam, M.; Mohammadikhah, M.; Badkoobeh, A.; Golkar, M.; Abbasi, K.; Karami, S.; Sayyad Soufdoost, R.; Kamali Hakim, L.; et al. Cross Talk Between Cells and the Current Bioceramics in Bone Regeneration: A Comprehensive Review. Cell Transplant. 2024, 33, 9636897241236030. [Google Scholar] [CrossRef]
- Maazouz, Y.; Rentsch, I.; Lu, B.; Santoni, B.L.G.; Doebelin, N.; Bohner, M. In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes. Acta Biomater. 2020, 15, 440–457. [Google Scholar] [CrossRef] [PubMed]
- Pires, L.C.A.; da Silva, R.C.; Poli, P.P.; Ruas Esgalha, F.; Hadad, H.; Palin, L.P.; Piquera Santos, A.F.; Teixiera Colombo, L.; Kawamata de Jesus, L.; Bassi, A.P.F.; et al. Evaluation of Osteoconduction of a Synthetic Hydroxyapatite/β-Tricalcium Phosphate Block Fixed in Rabbit Mandibles. Materials 2020, 31, 4902. [Google Scholar] [CrossRef]
- Sawada, K.; Nakahara, K.; Haga-Tsujimura, M.; Iizuka, T.; Fujioka-Kobayashi, M.; Igarashi, K.; Saulacic, N. Comparison of three block bone substitutes for bone regeneration: Long-term observation in the beagle dog. Odontology 2018, 106, 398–407. [Google Scholar] [CrossRef]
- Saberi, A.; Kouhjani, M.; Mohammadi, M.; Hosta-Rigau, L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: A cutting-edge approach. J. Nanobiotechnol. 2023, 21, 351. [Google Scholar] [CrossRef]
- de Souza Santos, A.M.; Dos Santos Pereira, R.; Montemezzi, P.; Mello-Machado, R.C.; Okamoto, R.; Sacco, R.; Noronha Lisboa-Filho, P.; Messora, M.R.; Mourão, C.F.; Hochuli-Vieira, E. The Interplay of Raloxifene and Sonochemical Bio-Oss in Early Maxillary Sinus Bone Regeneration: A Histological and Immunohistochemical Analysis in Rabbits. Medicina 2023, 59, 1521. [Google Scholar] [CrossRef]
- Wittig, U.S.; Friesenbichler, J.; Liegl-Atzwanger, B.; Igrec, J.; Andreou, D.; Leithner, A.; Scheipl, S. Artificial Bone Graft Substitutes for Curettage of Benign and Low-Grade Malignant Bone Tumors: Clinical and Radiological Experience with Cerasorb. Indian J. Orthop. 2023, 57, 1409–1414. [Google Scholar] [CrossRef]
- Fabris, A.L.D.S.; Faverani, L.P.; Gomes-Ferreira, P.H.S.; Polo, T.O.B.; Santiago-Júnior, J.F.; Okamoto, R. Bone repair access of BoneCeramic™ in 5-mm defects: Study on rat calvaria. J. Appl. Oral Sci. 2018, 26, e20160531. [Google Scholar] [CrossRef]
- FGM Dental Group. Nanosynt Block®—Produtos Biomateriais. Available online: https://fgmdentalgroup.com/produtos-biomateriais/nanosynt-block/ (accessed on 11 December 2024).
- Shuai, C.; Yang, W.; Feng, P.; Peng, S.; Pan, H. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact. Mater. 2020, 6, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Meysam, M.Z.; Sohrab, M.; Erfan, S. 3D porous HA/TCP composite scaffolds for bone tissue engineering. Ceram. Int. 2022, 16, 22647–22663. [Google Scholar] [CrossRef]
- Nascimento, J.R.B.; Sartoretto, S.C.; Alves, A.T.N.N.; Mourão, C.F.A.B.; Martinez-Zelaya, V.R.; Uzeda, M.J.; Granjeiro, J.M.; Montemezzi, P.; Calasans-Maia, M.D.; Calasans-Maia, J.A. In Vitro and In Vivo Evaluation of Nanostructured Biphasic Calcium Phosphate in Granules and Putty Configurations. Int. J. Environ. Res. Public Health 2021, 18, 533. [Google Scholar] [CrossRef]
- Ortiz-Puigpelat, O.; Elnayef, B.; Satorres-Nieto, M.; Gargallo-Albiol, J.; Hernández-Alfaro, F. Comparison of Three Biphasic Calcium Phosphate Block Substitutes: A Histologic and Histomorphometric Analysis in the Dog Mandible. Int. J. Periodontics Restor. Dent. 2019, 39, 315–323. [Google Scholar] [CrossRef]
- Ishack, S.; Mediero, A.; Wilder, T.; Ricci, J.L.; Cronstein, B.N. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 366–375. [Google Scholar] [CrossRef]
- FGM Dental Group. Instructions for use Nanosynt Block®. Available online: https://ifu.fgm.ind.br/ifu (accessed on 22 January 2025).
- Uzeda, M.J.; de Brito Resende, R.F.; Sartoretto, S.C.; Alves, A.T.N.N.; Granjeiro, J.M.; Calasans-Maia, M.D. Randomized clinical trial for the biological evaluation of two nanostructured biphasic calcium phosphate biomaterials as a bone substitute. Clin. Implant. Dent. Relat. Res. 2017, 19, 802–811. [Google Scholar] [CrossRef]
- ISO 13175-3; International Standard—Implants for Surgery—Calcium Phosphates—Part3: Hydroxyapatite and Beta-Tricaucium Phosphate Bone Substitutes. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- Lee, D.S.; Pai, Y.; Chang, S.; Kim, D.H. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 1, 971–976. [Google Scholar] [CrossRef]
- Blume, O.; Back, M.; Born, T.; Donkiewicz, P. Reconstruction of a Unilateral Alveolar Cleft Using a Customized Allogenic Bone Block and Subsequent Dental Implant Placement in an Adult Patient. J. Oral Maxillofac. Surg. 2019, 77, 2127.e1–2127.e11. [Google Scholar] [CrossRef]
- Abels, M.; Alkildani, S.; Pröhl, A.; Xiong, X.; Krastev, R.; Korzinskas, T.; Stojanovic, S.; Jung, O.; Najman, S.; Barbeck, M. The Granule Size Mediates the In Vivo Foreign Body Response and the Integration Behavior of Bone Substitutes. Materials 2021, 1, 7372. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Sharma, N.K.; Raquin, A.; Cooper, D.M.L.; Chen, X.; Johnston, J.D. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes. BioMedical Eng. OnLine 2023, 22, 73. [Google Scholar] [CrossRef]
- Montero, J.; Becerro, A.; Dib, A.; Quispe-López, N.; Borrajo, J.; Benito Garzón, L. Preliminary results of customized bone graft made by robocasting hydroxyapatite and tricalcium phosphates for oral surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 135, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Hassanajili, S.; Karami-Pour, A.; Oryan, A.; Talaei-Khozani, T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109960. [Google Scholar] [CrossRef]
Block | Po.V (tot) | Po (op) | Po.V (op) |
---|---|---|---|
I | 27.70 | 77.08 | 27.70 |
II | 26.41 | 73.27 | 26.41 |
III | 27.27 | 75.53 | 27.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva dos Santos, J.; Gonçales Souza, A.C.; Fantasia, R.; Cury Cecato, R.; Dias, G.A.; de Souza Batista, V.E.; Okamoto, R.; Ramos Verri, F. Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering. Coatings 2025, 15, 297. https://doi.org/10.3390/coatings15030297
Silva dos Santos J, Gonçales Souza AC, Fantasia R, Cury Cecato R, Dias GA, de Souza Batista VE, Okamoto R, Ramos Verri F. Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering. Coatings. 2025; 15(3):297. https://doi.org/10.3390/coatings15030297
Chicago/Turabian StyleSilva dos Santos, Jaqueline, Ana Carla Gonçales Souza, Ricardo Fantasia, Rafael Cury Cecato, Gabriela Aline Dias, Victor Eduardo de Souza Batista, Roberta Okamoto, and Fellippo Ramos Verri. 2025. "Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering" Coatings 15, no. 3: 297. https://doi.org/10.3390/coatings15030297
APA StyleSilva dos Santos, J., Gonçales Souza, A. C., Fantasia, R., Cury Cecato, R., Dias, G. A., de Souza Batista, V. E., Okamoto, R., & Ramos Verri, F. (2025). Synthesis and Evaluation of Porous Nanosynt Block (FGM®) as Synthetic Bone Substitute for Bone Tissue Engineering. Coatings, 15(3), 297. https://doi.org/10.3390/coatings15030297