Investigation on Decorative Materials for Wardrobe Surfaces with Visual and Tactile Emotional Experience
Abstract
:1. Introduction
1.1. Visual and Tactile Sensory Experience of Materials
1.2. The Present Study
2. Materials and Methods
2.1. Materials and Measurement
2.1.1. Measurement of Surface Roughness
2.1.2. Measurement of Surface Gloss
2.1.3. Measurement of Surface Color
2.2. Participants
2.2.1. Self-Evaluation Experiment
2.2.2. Procedure
3. Results and Discussion
3.1. Measurement of Material Technical Parameters
3.2. Tactile Experimental Results and Analysis
3.2.1. Correlation Analysis of Tactile Experiment
3.2.2. Regression Analysis of Tactile Experiment
3.3. Visual–Tactile Experimental Results and Analysis
3.3.1. Correlation Analysis of Visual–Tactile Experiment
3.3.2. Regression Analysis of Visual–Tactile Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- State Bulletin on Aging 2023. Available online: https://www.gov.cn/lianbo/bumen/202410/content_6979487.htm (accessed on 15 January 2025).
- Zhang, W.X.; Wang, G.; Liu, S. Introduction to Geropsychology; Nanjing University Press: Nanjing, China, 2020; pp. 109–113. [Google Scholar]
- Humes, L.E.; Busey, T.A.; Craig, J.C.; Kewley-Port, D. The effects of age on sensory thresholds and temporal gap detection in hearing, vision, and touch. Atten. Percept. Psychophys. 2009, 71, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Guzel, T.A. Consumer Attitudes toward Preference and Use of Wood, Woodenware, and Furniture: A Sample from Kayseri, Turkey. Bioresources 2020, 15, 28–37. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Niu, Y.T.; Yuan, Y.Y.; Zhang, L.T. Study on Dimensional Stability of Veneer Rice Straw Particleboard. Coatings 2020, 10, 558. [Google Scholar] [CrossRef]
- Peng, X.R.; Lu, B.; Li, W.G.; Li, B. Progress in research, development and application of advanced manufacturing technologies for panel furniture in China. Wood Sci. Technol. 2023, 37, 1–7+15. [Google Scholar]
- Filip, J.; Lukavsky, J.; Dechterenko, F.; Schmidt, F.; Fleming, R.W. Perceptual dimensions of wood materials. J. Vis. 2024, 24, 12. [Google Scholar] [CrossRef]
- Jiang, X.Y. Design Materials and Processing Technology; Beijing Institute of Technology Press: Beijing, China, 2010; pp. 33–37. [Google Scholar]
- Bhatta, S.R.; Tiippana, K.; Vahtikari, K.; Hughes, M.; Kyttä, M. Sensory and Emotional Perception of Wooden Surfaces through Fingertip Touch. Front. Psychol. 2017, 8, 367. [Google Scholar] [CrossRef]
- Chen, X.; Barnes, C.J.; Childs, T.H.C.; Henson, B.; Shao, F. Materials’ tactile testing and characterisation for consumer products’ affective packaging design. Mater. Des. 2009, 30, 4299–4310. [Google Scholar] [CrossRef]
- Guest, S.; Dessirier, J.M.; Mehrabyan, A.; McGlone, F.; Essick, G.; Gescheider, G.; Fontana, A.; Xiong, R.; Ackerley, R.; Blot, K. The development and validation of sensory and emotional scales of touch perception. Atten. Percept. Psychophys. 2011, 73, 531–550. [Google Scholar] [CrossRef]
- Lindberg, S.; Roos, A.; Kihlstedt, A.; Lindström, M. A product semantic study of the influence of the sense of touch on the evaluation of wood-based materials. Mater. Des. 2013, 52, 300–307. [Google Scholar] [CrossRef]
- Picard, D.; Dacremont, C.; Valentin, D.; Giboreau, A. Perceptual dimensions of tactile textures. Acta Psychol. 2003, 114, 165–184. [Google Scholar] [CrossRef]
- Ackerley, R.; Saar, K.; McGlone, F.; Wasling, H.B. Quantifying the sensory and emotional perception of touch: Differences between glabrous and hairy skin. Front. Behav. Neurosci. 2014, 8, 34. [Google Scholar] [CrossRef]
- Drewing, K.; Weyel, C.; Celebi, H.; Kaya, D. Systematic Relations between Affective and Sensory Material Dimensions in Touch. IEEE Trans. Haptics 2018, 11, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Drewing, K. Perceptuo-affective organization of touched materials in younger and older adults. PLoS ONE 2024, 19, e0296633. [Google Scholar] [CrossRef]
- Hu, Q.W.; Li, X.H.; Fang, H.; Wan, Q. The Tactile Perception Evaluation of Wood Surface with Different Roughness and Shapes: A Study Using Galvanic Skin Response. Wood Res. 2022, 67, 311–325. [Google Scholar] [CrossRef]
- Klöcker, A.; Oddo, C.M.; Camboni, D.; Penta, M.; Thonnard, J.L. Physical Factors Influencing Pleasant Touch during Passive Fingertip Stimulation. PLoS ONE 2014, 9, e101361. [Google Scholar] [CrossRef]
- Essick, G.K.; McGlone, F.; Dancer, C.; Fabricant, D.; Ragin, Y.; Phillips, N.; Jones, T.; Guest, S. Quantitative assessment of pleasant touch. Neurosci. Biobehav. Rev. 2010, 34, 192–203. [Google Scholar] [CrossRef]
- Taneja, P.; Olausson, H.; Trulsson, M.; Svensson, P.; Baad-Hansen, L. Defining pleasant touch stimuli: A systematic review and meta-analysis. Psychol. Res.-Psychol. Forsch. 2021, 85, 20–35. [Google Scholar] [CrossRef]
- Etzi, R.; Gallace, A. The arousing power of everyday materials: An analysis of the physiological and behavioral responses to visually and tactually presented textures. Exp. Brain Res. 2016, 234, 1659–1666. [Google Scholar] [CrossRef]
- Ramananantoandro, T.; Ramanakoto, M.F.; Rajemison, A.H.; Eyma, F. Relationship between density and aesthetic attributes of wood and preference of Malagasy consumers. Ann. For. Sci. 2013, 70, 649–658. [Google Scholar] [CrossRef]
- Huang, T.; Zhou, C.M.; Wang, X.M.; Kaner, J. A Study of Visual Perception Based on Colour and Texture of Reconstituted Decorative Veneer. Coatings 2024, 14, 57. [Google Scholar] [CrossRef]
- Rapuano, M.; Sarno, M.; Ruotolo, F.; Ruggiero, G.; Iuliano, S.; Masullo, M.; Maffei, L.; Cioffi, F.; Iachini, T. Emotional Reactions to Different Indoor Solutions: The Role of Age. Buildings 2023, 13, 1737. [Google Scholar] [CrossRef]
- Shitara, M.; Yoshida, H.; Kamijo, M.; Fujimaki, G.; Yamaguchi, H. Formation of Visual and Tactile Impressions When Evaluating Wooden Specimens. Mokuzai Gakkaishi 2017, 63, 149–161. [Google Scholar] [CrossRef]
- Jin, D.; Li, T. Research on Decorative Materials Properties Used in the Production of Cabinets Based on Visual/Tactile Experience. Coatings 2023, 13, 178. [Google Scholar] [CrossRef]
- Wastiels, L.; Schifferstein, H.N.J.; Heylighen, A.; Wouters, I. Relating material experience to technical parameters: A case study on visual and tactile warmth perception of indoor wall materials. Build. Environ. 2012, 49, 359–367. [Google Scholar] [CrossRef]
- Wastiels, L.; Schifferstein, H.N.J.; Heylighen, A.; Wouters, I. Red or rough, what makes materials warmer? Mater. Des. 2012, 42, 441–449. [Google Scholar] [CrossRef]
- Decré, G.B.; Cloonan, C. A touch of gloss: Haptic perception of packaging and consumers’ reactions. J. Prod. Brand Manag. 2019, 28, 117–132. [Google Scholar] [CrossRef]
- Fenko, A.; Schifferstein, H.N.J.; Hekkert, P. Looking hot or feeling hot: What determines the product experience of warmth? Mater. Des. 2010, 31, 1325–1331. [Google Scholar] [CrossRef]
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Surface Roughness Parameters and Their Values. ISO: Geneva, Switzerland, 2009.
- Russell, J.A.; Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Personal. 1977, 11, 273–294. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Mir, J.M.F.; Mateu, L.G. The Effects of White versus Coloured Light in Waiting Rooms on People’s Emotions. Buildings 2022, 12, 1356. [Google Scholar] [CrossRef]
M1 blister board PVC surface finish | M2 density board beechwood grain | M3 Osson board PVC surface finish | M4 multi-layer plywood UV paint |
M5 multi-layer board gray stone pattern | M6 ecological board melamine surface finish | M7 OSB board melamine surface finish black wood grain | M8 solid wood white oak |
M9 particle board melamine surface finish oak grain | M10 particle board melamine surface finish chrome metal silver gray | M11 fireproof board leather grain | M12 fireproof board cloth grain |
Sample Number | Physical Properties of Material Surfaces | ||||
---|---|---|---|---|---|
Roughness (μm) | Gloss (60°) (GU) | Color | |||
L* | a* | b* | |||
M1 | 1.5888 | 15.5 | 25.9 | 12.2 | 12.0 |
M2 | 0.5148 | 38.7 | 74.3 | 14.6 | 38.0 |
M3 | 0.7976 | 37.6 | 31.8 | 29.5 | 22.3 |
M4 | 0.2296 | 136.6 | 59.4 | 11.2 | 13.6 |
M5 | 12.9102 | 4.6 | 52.8 | 1.6 | 3.0 |
M6 | 5.0448 | 16.3 | 36.3 | 35.2 | 24.8 |
M7 | 3.0722 | 6.1 | 33.7 | 4.1 | 7.1 |
M8 | 4.8582 | 11.8 | 58.8 | 17.4 | 32.4 |
M9 | 13.7404 | 5.2 | 63.4 | 7.8 | 15.6 |
M10 | 5.4462 | 7.8 | 68.1 | 3.4 | 4.2 |
M11 | 7.7952 | 3.1 | 32.5 | 2.7 | 4.5 |
M12 | 10.8372 | 8.9 | 80.4 | 4.3 | 8.7 |
Pleasure | Arousal | Dominance | |||||
---|---|---|---|---|---|---|---|
Younger | Elderly | Younger | Elderly | Younger | Elderly | ||
Roughness | Pearson’s correlation | −0.937 * | −0.954 * | 0.951 * | 0.608 * | −0.914 * | −0.948 * |
Sig. (two-tailed) | <0.001 | <0.001 | <0.001 | 0.036 | <0.001 | <0.001 | |
Glossiness | Pearson’s correlation | 0.657 * | 0.678 * | −0.486 | 0.037 | 0.284 | 0.555 |
Sig. (two-tailed) | 0.02 | 0.015 | 0.109 | 0.910 | 0.371 | 0.061 |
Pleasure | Arousal | Dominance | |||||
---|---|---|---|---|---|---|---|
Younger | Elderly | Younger | Elderly | Younger | Elderly | ||
Roughness | Pearson’s correlation | −0.342 | −0.594 * | 0.886 * | 0.565 | −0.272 | −0.626 * |
Sig. (two-tailed) | 0.277 | 0.042 | <0.001 | 0.056 | 0.392 | 0.029 | |
Glossiness | Pearson’s correlation | 0.384 | 0.519 | −0.542 | −0.117 | 0.262 | 0.568 |
Sig. (two-tailed) | 0.217 | 0.084 | 0.069 | 0.718 | 0.412 | 0.054 | |
L* | Pearson’s correlation | 0.059 | 0.117 | 0.024 | 0.01 | 0.252 | 0.075 |
Sig. (two-tailed) | 0.856 | 0.716 | 0.941 | 0.975 | 0.429 | 0.816 | |
a* | Pearson’s correlation | −0.299 | 0.690 * | −0.250 | −0.247 | 0.662 * | −0.268 |
Sig. (two-tailed) | 0.345 | 0.013 | 0.434 | 0.439 | 0.019 | 0.4 | |
b* | Pearson’s correlation | 0.131 | 0.818 * | −0.372 | −0.144 | 0.221 | 0.841 * |
Sig. (two-tailed) | 0.684 | 0.001 | 0.234 | 0.656 | 0.491 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Jiang, W.; Chen, X.; Xu, Z.; Yan, X. Investigation on Decorative Materials for Wardrobe Surfaces with Visual and Tactile Emotional Experience. Coatings 2025, 15, 386. https://doi.org/10.3390/coatings15040386
Jin D, Jiang W, Chen X, Xu Z, Yan X. Investigation on Decorative Materials for Wardrobe Surfaces with Visual and Tactile Emotional Experience. Coatings. 2025; 15(4):386. https://doi.org/10.3390/coatings15040386
Chicago/Turabian StyleJin, Dong, Wanting Jiang, Xu Chen, Zhichang Xu, and Xiaoxing Yan. 2025. "Investigation on Decorative Materials for Wardrobe Surfaces with Visual and Tactile Emotional Experience" Coatings 15, no. 4: 386. https://doi.org/10.3390/coatings15040386
APA StyleJin, D., Jiang, W., Chen, X., Xu, Z., & Yan, X. (2025). Investigation on Decorative Materials for Wardrobe Surfaces with Visual and Tactile Emotional Experience. Coatings, 15(4), 386. https://doi.org/10.3390/coatings15040386