Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bio-Alkyd Resins
2.3. Characterization of Resins
2.4. Coatings Preparation
2.5. Coating Characterization and Performance
2.6. Coatings Biodegradability
3. Results and Discussion
3.1. Synthesis and Chemical Characterization of the Bio-Alkyd Resin
3.2. Characterization and Performance of the Alkyd Coatings
3.3. Biodegradability of the Alkyd Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juhl, M.; Hauschild, M.; Dam-Johansen, K. An eco-strategy for development of more sustainable coatings. Prog. Org. Coat. 2024, 197, 108781. [Google Scholar]
- Paraskar, P.; Prabhudesai, M.; Hatkar, V.; Kulkarni, R. Vegetable oil based polyurethane coatings—A sustainable approach: A review. Prog. Org. Coat. 2021, 156, 106267. [Google Scholar]
- Czachor-Jadacka, D.; Biller, K.; Pilch-Pitera, B. Recent development advances in bio-based powder coatings: A review. J. Coat. Technol. Res. 2024, 21, 435–444. [Google Scholar] [CrossRef]
- Malik, P.; Sarkhel, D. Advancements in bio-based materials and low-VOC formulations: Paving the way for sustainable innovation in the coatings industry. J. Coat. Technol. Innov. 2024, 2, 34–38. [Google Scholar]
- Bertling, J.; Dau, K.; Selig, U.; Werner, S. Releases of Microplastic into the Marine Environment—State of Knowledge and Options for Action. German Roundtable on Marine Litter. 2022. Available online: https://www.muell-im-meer.de/sites/default/files/2022-03/Issuepaper_microplastics_final.pdf (accessed on 5 September 2024).
- Chiplunkar, P.P.; Pratap, A.P. Utilization of sunflower acid oil for synthesis of alkyd resin. Prog. Org. Coat. 2016, 93, 61–67. [Google Scholar] [CrossRef]
- Kunduru, K.R.; Hogerat, R.; Ghosal, K.; Shaheen-Mualim, M.; Farad, S. Renewable polyol-based biodegradable polyesters as greener plastics for industrial applications. Chem. Eng. J. 2023, 459, 141211. [Google Scholar]
- Cadena, C.; Irusta, L.; Fernandez-Berridi, M.J. Performance evaluation of alkyd coatings for corrosion protection in urban and industrial environments. Prog. Org. Coat. 2013, 76, 1273–1278. [Google Scholar]
- Guo, H.; Zhou, K.; Feng, Z.; Li, C.; Xie, J.; Ma, J.; Zhang, X.; Wang, X.; Xu, K.; Li, C.; et al. Corrosion Behavior of alkyd-resin-coated carbon steel under cathodic polarization in both static and flowing seawater. Coatings 2023, 13, 1296. [Google Scholar] [CrossRef]
- Kizilkonca, E.; Erim, F.B. Development of Anti-aging and Anticorrosive nanceria dispersed Alkyd coating for decorative and industrial purposes. Coatings 2019, 9, 610. [Google Scholar] [CrossRef]
- de Meijer, M. Review on the durability of exterior wood coatings with reduced VOC-content. Prog. Org. Coat. 2001, 43, 217–225. [Google Scholar]
- Ersoy, O.; Fidan, S.; Köse, H.; Güler, D.; Özdöver, Ö. Effect of calcium carbonate particle size on the scratch resistance of rapid Alkyd-based wood coatings. Coatings 2021, 11, 340. [Google Scholar] [CrossRef]
- Aigbodion, A.I.; Pillai, C.K. Synthesis and molecular weight characterization of rubber sedd oil-modified alkyd resins. J. Appl. Polym. Sci. 2001, 79, 2434–2438. [Google Scholar] [CrossRef]
- Hofland, A. Alkyd resins: From down and out to alive and kicking. Prog. Org. Coat. 2012, 73, 274–282. [Google Scholar] [CrossRef]
- Otabor, G.O.; Ifijen, I.H.; Mohammed, F.U.; Aigbodion, A.I.; Ikhuoria, E.U. Alkyd resin from rubber seed oil/linseed oil blend: A comparative study of the physiochemical properties. Heliyon 2019, 5, e01621. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Akram, D.; Sharmin, E.; Zafar, F.; Ahmad, S. Vegetable oil based eco-friendly coating materials: A review article. Arab. J. Chem. 2014, 7, 469–479. [Google Scholar] [CrossRef]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Müller, R.J.; Kleeberg, I.; Deckwer, W.D. Biodegradation of polyesters containing aromatic constituents. J. Biotechnol. 2001, 86, 87–95. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Leclair, A.; Romand, A.; Choule, O.; Coggio, W.D.; Florent, N. Development of Low-Color Alkyd Resins with High Content of Biobased Succinic Acid. Paint & Coatings Industry, 1 October 2014. Available online: https://www.pcimag.com/articles/99678-development-of-low-color-alkyd-resins-with-high-content-of-biobased-succinic-acid (accessed on 23 March 2025).
- Nguyen, H.D.; Löf, D.; Hvilsted, S.; Daugaard, A.E. Highly branched bio-based Unsaturated Polyesters by Enzymatic Polymerization. Polymers 2016, 8, 363. [Google Scholar] [CrossRef]
- Denis, M.; Totee, C.; Le Borgne, D.; Caillol, S.; Negrell, C. Cardanol-modified alkyd resins: Novel route to make greener alkyd coatings. Prog. Org. Coat. 2022, 172, 107087. [Google Scholar] [CrossRef]
- Rowe, M.D.; Eyiler, E.; Walters, K.B. Hydrolytic degradation of bio-based polyesters: Effect of pH and time. Polym. Test. 2016, 52, 192–199. [Google Scholar] [CrossRef]
- Wang, Y.; van Putten, R.-J.; Tieterna, A.; Parsons, J.R.; Gruter, G.-J.M. Polyester biodegradability: Importance and potential for optimisation. Green Chem. 2024, 26, 3698–3716. [Google Scholar] [PubMed]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar]
- İşeri-Çağlar, D.; Baştürk, E.; Oktay, B.; Kahraman, M.V. Preparation and evaluation of linseed oil based alkyd paints. Prog. Org. Coat. 2014, 77, 81–86. [Google Scholar]
- Honzicek, J.; Fedorova, T.; Vinklárek, J.; Mikysek, T.; Cisarová, I. Modified Ferrocenes as Primary Driers for Formulations of Alkyd Paints. Coatings 2020, 10, 873. [Google Scholar] [CrossRef]
- Charamzová, I.; Vinklárek, J.; Kalenda, P.; Honzicek, J. Application of oxovanadium complex stabilized by N,N,N,N-chelating ligand in air-drying paints. Coatings 2018, 8, 204. [Google Scholar] [CrossRef]
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Organization for Standardization—ISO: Geneva, Switzerland, 1995.
- UNE-EN 13137:2002; Characterization of Waste—Determination of Total Organic Carbon (TOC) in Waste, Sludges and Sediments. UNE: Asociación Española de Normalización: Madrid, Spain, 2002.
- UNE-EN 15936:2022; Soil, Waste, Treated Biowaste and Sludge—Determination of Total Organic Carbon (TOC) by Dry Combustion. UNE: Asociación Española de Normalización: Madrid, Spain, 2022.
- ISO 2813:2014; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. International Organization for Standardization—ISO: Geneva, Switzerland, 2014.
- EN ISO 2409:2020; Paints and Varnishes—Cross-Cut Test. International Organization for Standardization—ISO: Geneva, Switzerland, 2020.
- EN ISO 1522: 2022; Paints and Varnishes—Pendulum Damping Test. International Organization for Standardization—ISO: Geneva, Switzerland, 2022.
- Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- ISO 14855-1:2012; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions-Method by Analysis of Evolved Carbon Dioxide-Part 1: General Method. International Organization for Standardization—ISO: Geneva, Switzerland, 2012.
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar]
- Ifijen, I.H.; Maliki, M.; Odiachi, I.J.; Aghedo, O.N.; Ohiocheoya, E.B. Review on Solvents Based Alkyd Resins and Water Borne Alkyd Resins: Impacts of Modification on Their Coating Properties. Chem. Afr. 2022, 5, 211–225. [Google Scholar] [CrossRef]
- Wicks, Z.W. Alkyd resins. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 978-047-004-610-4. [Google Scholar]
- Hood, D.K.; Musa, O.M. Application of Maleic Anhydride-based Materials. In Handbook of Maleic Anhydride-Based Materials; Musa, O.M., Ed.; Springer EBooks; Springer Nature: Cham, Switzerland, 2016; ISBN 978-3-319-29454-4. [Google Scholar]
- Muizebelt, W.J.; Hubert, J.C.; Nielen, M.W.; Klaasen, R.J.; Zabel, K.H. Crosslink mechanisms of high-solids alkyd resins in the presence of reactive diluents. Prog. Org. Coat. 2000, 40, 121–130. [Google Scholar]
Materials | F_REF * | F_AL1 | F_AL2 | |
---|---|---|---|---|
Resins | ||||
Alkyd resin REF | [wt%] | 71.01 | - | - |
Bio-Alkyd AL1 | [wt%] | - | 62.49 | |
Bio-Alkyd AL2 | [wt%] | - | 62.49 | |
Solvents | ||||
D40 solvent | [wt%] | 24.94 | - | - |
Bu Ac solvent | [wt%] | - | 33.46 | 33.46 |
Additives ** | ||||
Ca 10% | [wt%] | 0.57 | 0.57 | 0.57 |
Zr 12% | [wt%] | 2.48 | 2.48 | 2.48 |
Mn 1% | [wt%] | 0.63 | 0.63 | 0.63 |
Additol XL 297 | [wt%] | 0.37 | 0.37 | 0.37 |
Total | [wt%] | 100 | 100 | 100 |
Formulation solids content | [wt%] | 64.8 | 64.8 | 64.8 |
Sample | Tg * [°C] | CA ** [°] |
---|---|---|
F_REF | 2.0 | 96 ± 3 |
F_AL1 | −25 | 89 ± 4 |
F_AL2 | −23 | 80 ± 3 |
Sample | Dry Matter * [%] | TOC ** [%DW] |
---|---|---|
F_REF | 97.0 | 66.4 |
F_AL1 | 95.1 | 66.3 |
F_AL2 | 97.4 | 66.9 |
Substrate Color | Samples | L* | a* | b* | ΔE*ab (D65) |
---|---|---|---|---|---|
White | Substrate | 94.60 ± 0.04 | 1.20 ± 0.03 | −6.31 ± 0.09 | - |
F_REF | 93.17 ± 0.04 | −1.65 ± 0.05 | 3.43 ± 0.20 | 10.24 | |
F_AL1 | 93.41 ± 0.16 | −0.79 ± 0.10 | 1.11 ± 0.55 | 7.77 | |
F_AL2 | 93.11 ± 0.09 | −1.14 ± 0.12 | 0.77 ± 0.35 | 7.60 | |
Black | Substrate | 28.47 ± 0.05 | 0.50 ± 0.01 | 0.21 ± 0.02 | - |
F_REF | 28.07 ± 0.12 | 0.36 ± 0.03 | 0.29 ± 0.07 | 0.43 | |
F_AL1 | 27.94 ± 0.04 | 0.41 ± 0.01 | 0.19 ±0.03 | 0.54 | |
F_AL2 | 28.22 ± 0.05 | 0.38 ± 0.02 | 0.10 ±0.04 | 0.30 |
Sample | Dark Glass [Gloss Units] | Pine Wood [Gloss Units] | |
---|---|---|---|
60° | 20° | 60° | |
F_REF | 120.7 ± 2.0 | 150.2 ± 2.0 | 85.5 ± 2.0 |
F_AL1 | 100.7 ± 2.0 | 122.4 ± 2.0 | 80.5 ± 2.0 |
F_AL2 | 92.7 ± 2.0 | 100.2 ± 2.0 | 75.5 ± 2.0 |
Sample | Pine Wood Substrate |
---|---|
F_REF | Class 0 |
F_AL1 | Class 0 |
F_AL2 | Class 0 |
Sample | Persoz Hardness [Number of Oscillations] | |
---|---|---|
48 h | 15 Days | |
F_REF | 20–22 | 30–32 |
F_AL1 | 100–119 | 132–140 |
F_AL2 | 120–126 | 144–148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etxeberria, I.; Svensson, I.; Díaz, A.I.; Barruetabeña, L. Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance. Coatings 2025, 15, 400. https://doi.org/10.3390/coatings15040400
Etxeberria I, Svensson I, Díaz AI, Barruetabeña L. Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance. Coatings. 2025; 15(4):400. https://doi.org/10.3390/coatings15040400
Chicago/Turabian StyleEtxeberria, Idoia, Ingemar Svensson, Ana Isabel Díaz, and Leire Barruetabeña. 2025. "Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance" Coatings 15, no. 4: 400. https://doi.org/10.3390/coatings15040400
APA StyleEtxeberria, I., Svensson, I., Díaz, A. I., & Barruetabeña, L. (2025). Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance. Coatings, 15(4), 400. https://doi.org/10.3390/coatings15040400