Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. XRD Analysis
3.2. Raman Spectroscopy
3.3. FESEM Microscopy and Technical Image Processing
3.4. AFM Analysis and Contact Angle Measurements of the Substrates
3.5. UV-Vis Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannan, N.; Vakeesan, D. Solar Energy for Future World: A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; SangmeshB; Karuppasamy, K.S.K. Renewable and Sustainable Clean Energy Development and Impact on Social, Economic, and Environmental Health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Azad, A.K.; Sharma, S.C.; Rasul, M.G. Clean Energy for Sustainable Development: Comparisons and Contrasts of New Approaches; Academic Press: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-805423-9. [Google Scholar]
- Roesch, R.; Faber, T.; Von Hauff, E.; Brown, T.M.; Lira-Cantu, M.; Hoppe, H. Procedures and Practices for Evaluating Thin-Film Solar Cell Stability. Adv. Energy Mater. 2015, 5, 1501407. [Google Scholar] [CrossRef]
- Fthenakis, V. Sustainability of Photovoltaics: The Case for Thin-Film Solar Cells. Renew. Sustain. Energy Rev. 2009, 13, 2746–2750. [Google Scholar] [CrossRef]
- Sudha Gulati; Richa Jain Solar Cells for Ecological Sustainable Development: A Review. J. Adv. Zool. 2023, 44, 1109–1121. [CrossRef]
- Green, M.A.; Dunlop, E.D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Solar Cell Efficiency Tables (Version 61). Prog. Photovolt. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- Vinayakumar, V.; Shaji, S.; Avellaneda, D.; Aguilar-Martínez, J.A.; Krishnan, B. Copper Antimony Sulfide Thin Films for Visible to near Infrared Photodetector Applications. RSC Adv. 2018, 8, 31055–31065. [Google Scholar] [CrossRef]
- Papež, N.; Dallaev, R.; Ţălu, Ş.; Kaštyl, J. Overview of the Current State of Gallium Arsenide-Based Solar Cells. Materials 2021, 14, 3075. [Google Scholar] [CrossRef]
- Pasini, S.; Spoltore, D.; Parisini, A.; Marchionna, S.; Fornasini, L.; Bersani, D.; Fornari, R.; Bosio, A. Innovative Back-Contact for S b 2 S e 3 -Based Thin Film Solar Cells. Solar Energy 2023, 249, 414–423. [Google Scholar] [CrossRef]
- Pasini, S.; Spoltore, D.; Parisini, A.; Foti, G.; Marchionna, S.; Vantaggio, S.; Fornari, R.; Bosio, A. Sb2Se3 Polycrystalline Thin Films Grown on Different Window Layers. Coatings 2023, 13, 338. [Google Scholar] [CrossRef]
- Garza, C.; Shaji, S.; Arato, A.; Perez Tijerina, E.; Alan Castillo, G.; Das Roy, T.K.; Krishnan, B. P-Type CuSbS2 Thin Films by Thermal Diffusion of Copper into Sb2S3. Sol. Energy Mater. Sol. Cells 2011, 95, 2001–2005. [Google Scholar] [CrossRef]
- Srivastava, A.; Ullas, A.V.; Roy, N. Theoretical Design and Performance Evaluation of a Lead-Free Fully Inorganic CIGS Solar Cell with CuSbS2 as HTL. J. Phys. Chem. Solids 2025, 196, 112331. [Google Scholar] [CrossRef]
- Prakash, K.; James, A.; Valeti, N.J.; Singha, M.K. Optimization and Numerical Studies with Machine Learning Assisted Graphene-Based CuSbS2 Thin Film Solar Cell for Flexible Electronics Applications. J. Phys. Chem. Solids 2025, 199, 112513. [Google Scholar] [CrossRef]
- Parekh, Z.R.; Deshpande, M.P.; Bhatt, S.V.; Bhoi, H.R.; Kannaujiya, R.M.; Joshi, Y.V.; Pandya, S.J.; Chaki, S.H. Bridgman Grown CuSbS2 Single Crystal and Its Application as Photodetector and Potential Thermoelectric Material. J. Alloys Compd. 2023, 968, 171738. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmed, R.; Ali, N.; Butt, F.K.; Shaari, A.; Shamsuri, W.N.W.; Khenata, R.; Prakash, D.; Verma, K.D. Post Annealing Effects on Structural, Optical and Electrical Properties of CuSbS2 Thin Films Fabricated by Combinatorial Thermal Evaporation Technique. Superlattices Microstruct. 2016, 89, 136–144. [Google Scholar] [CrossRef]
- Fu, Y.; Lohan, H.; Righetto, M.; Huang, Y.-T.; Kavanagh, S.R.; Cho, C.-W.; Zelewski, S.J.; Woo, Y.W.; Demetriou, H.; McLachlan, M.A.; et al. Structural and Electronic Features Enabling Delocalized Charge-Carriers in CuSbSe2. Nat. Commun. 2025, 16, 65. [Google Scholar] [CrossRef] [PubMed]
- Conley, K.M.; Cocchi, C.; Ala-Nissila, T. Formation of Near-IR Excitons in Low-Dimensional CuSbS2. J. Phys. Chem. C 2021, 125, 21087–21092. [Google Scholar] [CrossRef]
- Macías, C.; Lugo, S.; Benítez, Á.; López, I.; Kharissov, B.; Vázquez, A.; Peña, Y. Thin Film Solar Cell Based on CuSbS2 Absorber Prepared by Chemical Bath Deposition (CBD). Mater. Res. Bull. 2017, 87, 161–166. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H.; Chen, S.; Zhong, J.; Lv, L.; Niu, D.; Tang, J. CuSbS2 as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study. Chem. Mater. 2014, 26, 3135–3143. [Google Scholar] [CrossRef]
- Rastogi, A.C.; Janardhana, N.R. Properties of CuSbS2 Thin Films Electrodeposited from Ionic Liquids as P-Type Absorber for Photovoltaic Solar Cells. Thin Solid Film. 2014, 565, 285–292. [Google Scholar] [CrossRef]
- Makin, F.; Alam, F.; Buckingham, M.A.; Lewis, D.J. Synthesis of Ternary Copper Antimony Sulfide via Solventless Thermolysis or Aerosol Assisted Chemical Vapour Deposition Using Metal Dithiocarbamates. Sci. Rep. 2022, 12, 5627. [Google Scholar] [CrossRef] [PubMed]
- Rabhi, A.; Kanzari, M.; Rezig, B. Optical and Structural Properties of CuSbS2 Thin Films Grown by Thermal Evaporation Method. Thin Solid Film. 2009, 517, 2477–2480. [Google Scholar] [CrossRef]
- Saragih, A.D.; Kuo, D.-H.; Tuan, T.T.A. Thin Film Solar Cell Based on P-CuSbS2 Together with Cd-Free GaN/InGaN Bilayer. J Mater. Sci. Mater. Electron. 2017, 28, 2996–3003. [Google Scholar] [CrossRef]
- Ramos Aquino, J.A.; Rodriguez Vela, D.L.; Shaji, S.; Avellaneda, D.A.; Krishnan, B. Spray Pyrolysed Thin Films of Copper Antimony Sulfide as Photovoltaic Absorber. Phys. Status Solidi C 2016, 13, 24–29. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Zhang, S.; Liu, L.; Wan, L.; Guo, H.; Yang, X.; Cheng, Z.; Hu, L.; Niu, H.; et al. Spray-Coated Copper Antimony Sulfide (CuSbS2) Thin Film: A Novel Counter Electrode for Quantum Dot-Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2021, 124, 105613. [Google Scholar] [CrossRef]
- Prakash, K.; Valeti, N.J.; Indraja, B.; Singha, M.K. Modeling and Optimization of Numerical Studies on CuSbS2 Thin Film Solar Cell with ∼ 15% Efficiency. Optik 2024, 300, 171632. [Google Scholar] [CrossRef]
- Rampino, S.; Pattini, F.; Bronzoni, M.; Mazzer, M.; Sidoli, M.; Spaggiari, G.; Gilioli, E. CuSbSe2 Thin Film Solar Cells with ~4% Conversion Efficiency Grown by Low-Temperature Pulsed Electron Deposition. Sol. Energy Mater. Sol. Cells 2018, 185, 86–96. [Google Scholar] [CrossRef]
- Chinnaiyah, S.; Naik, R.; Ramesh Babu, R. Improvement of Photovoltaic Performance on Inverted Chalcostibite CuSbS2 Solar Cells Using Sr-Doped TiO2 Window Layers. J. Mater. Sci. Mater. Electron. 2024, 35, 1015. [Google Scholar] [CrossRef]
- Fu, L.; Yu, J.; Wang, J.; Xie, F.; Yao, S.; Zhang, Y.; Cheng, J.; Li, L. Thin Film Solar Cells Based on Ag-Substituted CuSbS2 Absorber. Chem. Eng. J. 2020, 400, 125906. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Yang, Z.; Ng, B.K.; Jiang, L.; Lai, Y.; Jia, M. CuSbS2 Solar Cells Using CdS, In2S3 and the In/Cd-Based Hybrid Buffers. J. Elec. Mater. 2021, 50, 3283–3287. [Google Scholar] [CrossRef]
- Mavlonov, A.; Nishimura, T.; Chantana, J.; Kawano, Y.; Masuda, T.; Minemoto, T. Back-Contact Barrier Analysis to Develop Flexible and Bifacial Cu(In,Ga)Se2 Solar Cells Using Transparent Conductive In2O3: SnO2 Thin Films. Solar Energy 2020, 211, 1311–1317. [Google Scholar] [CrossRef]
- Shin, M.J.; Park, S.; Lee, A.; Park, S.J.; Cho, A.; Kim, K.; Ahn, S.K.; Hyung Park, J.; Yoo, J.; Shin, D.; et al. Bifacial Photovoltaic Performance of Semitransparent Ultrathin Cu(In,Ga)Se2 Solar Cells with Front and Rear Transparent Conducting Oxide Contacts. Appl. Surf. Sci. 2021, 535, 147732. [Google Scholar] [CrossRef]
- Banu, S.; Ahn, S.J.; Ahn, S.K.; Yoon, K.; Cho, A. Fabrication and Characterization of Cost-Efficient CuSbS2 Thin Film Solar Cells Using Hybrid Inks. Sol. Energy Mater. Sol. Cells 2016, 151, 14–23. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Yan, C.; Sun, K.; Cui, X.; Liu, F.; Liu, Z.; Zhang, X.; Liu, X.; Stride, J.A.; et al. High Open-circuit Voltage CuSbS2 Solar Cells Achieved through the Formation of Epitaxial Growth of CdS/CuSbS2 Hetero-interface by Post-annealing Treatment. Prog. Photovolt. 2019, 27, 37–43. [Google Scholar] [CrossRef]
- Abouabassi, K.; Sala, A.; Atourki, L.; Soussi, A.; Elfanaoui, A.; Kirou, H.; Hssi, A.A.; Bouabid, K.; Gilioli, E.; Ihlal, A. Electrodeposited CuSbSe2 Thin Films Based Solar Cells on Various Substrates. J. Nanopart. Res. 2022, 24, 221. [Google Scholar] [CrossRef]
- Zhang, Y. The Development of RoHS-Compliant and Earth-Abundant CuSbS2 Thin Film Solar Cells. Ph.D. Thesis, UNSW Sydney, Sydney, Australia, 2021. [Google Scholar]
- Septina, W.; Ikeda, S.; Iga, Y.; Harada, T.; Matsumura, M. Thin Film Solar Cell Based on CuSbS2 Absorber Fabricated from an Electrochemically Deposited Metal Stack. Thin Solid Film. 2014, 550, 700–704. [Google Scholar] [CrossRef]
- Chen, W.-L.; Kuo, D.-H.; Tuan, T.T.A. Preparation of CuSbS2 Thin Films by Co-Sputtering and Solar Cell Devices with Band Gap-Adjustable n-Type InGaN as a Substitute of ZnO. J. Elec. Mater. 2016, 45, 688–694. [Google Scholar] [CrossRef]
- Welch, A.W.; Baranowski, L.L.; Zawadzki, P.; DeHart, C.; Johnston, S.; Lany, S.; Wolden, C.A.; Zakutayev, A. Accelerated Development of CuSbS2 Thin Film Photovoltaic Device Prototypes: Accelerated Development of CuSbS2 Thin Film Photovoltaic Device Prototypes. Prog. Photovolt. Res. Appl. 2016, 24, 929–939. [Google Scholar] [CrossRef]
- Kang, L.; Zhao, L.; Jiang, L.; Yan, C.; Sun, K.; Ng, B.K.; Gao, C.; Liu, F. In Situ Growth of CuSbS2 Thin Films by Reactive Co-Sputtering for Solar Cells. Mater. Sci. Semicond. Process. 2018, 84, 101–106. [Google Scholar] [CrossRef]
- Chalapathi, U.; Bhaskar, P.U.; Cheruku, R.; Sambasivam, S.; Park, S.-H. Evolution of Large-Grained CuSbS2 Thin Films by Rapid Sulfurization of Evaporated Cu–Sb Precursor Stacks for Photovoltaics Application. Ceram. Int. 2023, 49, 4758–4763. [Google Scholar] [CrossRef]
- Ong, K.H.; Agileswari, R.; Maniscalco, B.; Arnou, P.; Kumar, C.C.; Bowers, J.W.; Marsadek, M.B. Review on Substrate and Molybdenum Back Contact in CIGS Thin Film Solar Cell. Int. J. Photoenergy 2018, 2018, 9106269. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Zhang, P.; Cong, J.; Li, J.; Hao, X. Formation Mechanisms of Voids and Pin-Holes in CuSbS2 Thin Film Synthesized by Sulfurizing a Co-Sputtered Cu–Sb Precursor. J. Mater. Chem. A 2022, 10, 8015–8024. [Google Scholar] [CrossRef]
- Shapouri, S.; Rajabi Kalvani, P.; Jahangiri, A.R.; Elahi, S.M. Physical Characterization of Copper Oxide Nanowire Fabricated via Magnetic-Field Assisted Thermal Oxidation. J. Magn. Magn. Mater. 2021, 524, 167633. [Google Scholar] [CrossRef]
- Kalvani, P.R.; Jahangiri, A.R.; Shapouri, S.; Sari, A.; Jalili, Y.S. Multimode AFM Analysis of Aluminum-Doped Zinc Oxide Thin Films Sputtered under Various Substrate Temperatures for Optoelectronic Applications. Superlattices Microstruct. 2019, 132, 106173. [Google Scholar] [CrossRef]
- Jahangiri, A.R.; Rajabi Kalvani, P.; Shapouri, S.; Sari, A.; Ţălu, Ş.; Jalili, Y.S. Quantitative SEM Characterisation of Ceramic Target Prior and after Magnetron Sputtering: A Case Study of Aluminium Zinc Oxide. J. Microsc. 2021, 281, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Shapouri, S.; Malekfar, R.; Rajabi Kalvani, P.; Parisini, A.; Bosio, A. Crystalline Phase Evolution in CuSbS2 Solar Absorber Thin Films Fabricated via Spray Pyrolysis. Opt. Mater. 2024, 152, 115270. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Shapouri, S.; Elahi, S.M.; Dejam, L.; Bagheri, Z.; Ghaderi, A.; Solaymani, S. Micromorphology and Optical Bandgap Characterization of Copper Oxide Nanowires. Silicon 2018, 10, 1911–1919. [Google Scholar] [CrossRef]
- Ashfaq, A.; Jacob, J.; Bano, N.; Nabi, M.A.U.; Ali, A.; Ahmad, W.; Mahmood, K.; Arshad, M.I.; Ikram, S.; Rehman, U.; et al. A Two Step Technique to Remove the Secondary Phases in CZTS Thin Films Grown by Sol—Gel Method. Ceram. Int. 2019, 45, 10876–10881. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Kumar, M.; Persson, C. Cu(Sb,Bi)(S,Se)2 as Indium-Free Absorber Material with High Optical Efficiency. Energy Procedia 2014, 44, 176–183. [Google Scholar] [CrossRef]
- Sejkora, J.; Buixaderas, E.; Škácha, P.; Plášil, J. Micro-Raman Spectroscopy of Natural Members along CuSbS2–CuSbSe2 Join. J. Raman Spectrosc. 2018, 49, 1364–1372. [Google Scholar] [CrossRef]
- Chlibi, N.; Silva, J.P.B.; Vieira, E.M.F.; Goncalves, L.M.; Moreira, J.A.; Chahboun, A.; Dahman, H.; Pereira, M.; Gomes, M.J.M.; Mir, L.E. Touch Sensor and Photovoltaic Characteristics of CuSbS2 Thin Films. Ceram. Int. 2021, 47, 22594–22603. [Google Scholar] [CrossRef]
- Alqahtani, T.; Khan, M.D.; Lewis, D.J.; Zhong, X.L.; O’Brien, P. Scalable Synthesis of Cu–Sb–S Phases from Reactive Melts of Metal Xanthates and Effect of Cationic Manipulation on Structural and Optical Properties. Sci. Rep. 2021, 11, 1887. [Google Scholar] [CrossRef]
- García, R.G.A.; Cerdán-Pasarán, A.; Perez, E.A.R.; Pal, M.; Hernández, M.M.; Mathews, N.R. Phase Pure CuSbS2 Thin Films by Heat Treatment of Electrodeposited Sb2S3/Cu Layers. J. Solid State Electrochem. 2020, 24, 185–194. [Google Scholar] [CrossRef]
- Avilez García, R.G.; Cerdán-Pasarán, A.; Enríquez, J.P.; Mathews, N.R. Pulse Electrodeposition of CuSbS2 Thin Films: Role of Cu/Sb Precursor Ratio on the Phase Formation and Its Performance as Photocathode for Hydrogen Evolution§. Heliyon 2024, 10, e24491. [Google Scholar] [CrossRef]
- Wan, L.; Ma, C.; Hu, K.; Zhou, R.; Mao, X.; Pan, S.; Wong, L.H.; Xu, J. Two-Stage Co-Evaporated CuSbS2 Thin Films for Solar Cells. J. Alloys Compd. 2016, 680, 182–190. [Google Scholar] [CrossRef]
- Wang, W.; Zhi, G.; Liu, J.; Hao, L.; Yang, L.; Zhao, Y.; Hu, Y. Effect of PVP Content on Photocatalytic Properties of CuSbS2 Particles with Chemical Etching. J. Nanopart Res. 2020, 22, 294. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, E.; Jeon, H.S.; Ahn, S.J.; Oh, M.-K.; Min, B.K. A Comparative Study of Solution Based CIGS Thin Film Growth on Different Glass Substrates. Appl. Surf. Sci. 2011, 258, 120–125. [Google Scholar] [CrossRef]
- Dallaeva, D.; Ţălu, Ş.; Stach, S.; Škarvada, P.; Tománek, P.; Grmela, L. AFM Imaging and Fractal Analysis of Surface Roughness of AlN Epilayers on Sapphire Substrates. Appl. Surf. Sci. 2014, 312, 81–86. [Google Scholar] [CrossRef]
- Pawlus, P.; Reizer, R.; Wieczorowski, M. Functional Importance of Surface Texture Parameters. Materials 2021, 14, 5326. [Google Scholar] [CrossRef] [PubMed]
- Leach, R.K. Surface Topography Characterization. In Fundamental Principles of Engineering Nanometrology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 211–262. ISBN 978-0-08-096454-6. [Google Scholar]
- Danish, M. Contact Angle Studies of Hydrophobic and Hydrophilic Surfaces. In Handbook of Magnetic Hybrid Nanoalloys and Their Nanocomposites; Thomas, S., Rezazadeh Nochehdehi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 761–782. ISBN 978-3-030-90947-5. [Google Scholar]
- Yu, W.; Lee, J.G.; Joo, Y.-H.; Hou, B.; Um, D.-S.; Kim, C.-I. Etching Characteristics and Surface Properties of Fluorine-Doped Tin Oxide Thin Films under CF4-Based Plasma Treatment. Appl. Phys. A 2022, 128, 942. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Cheng, I.-C.; Hsu, C.-C.; Chen, J.-Z. DC-Pulse Atmospheric-Pressure Plasma Jet and Dielectric Barrier Discharge Surface Treatments on Fluorine-Doped Tin Oxide for Perovskite Solar Cell Application. J. Phys. D Appl. Phys. 2018, 51, 025502. [Google Scholar] [CrossRef]
- Holzhey, P.; Prettl, M.; Collavini, S.; Mortan, C.; Saliba, M. Understanding the Impact of Surface Roughness: Changing from FTO to ITO to PEN/ITO for Flexible Perovskite Solar Cells. Sci. Rep. 2023, 13, 6375. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.J.; Hyun, S.-H.; Kim, D.-H.; Kim, D.-S.; Ryu, J. Fabrication of Mesoporous Titania Aerogel Film via Supercritical Drying. J. Mater. Sci. 2009, 44, 3997–4002. [Google Scholar] [CrossRef]
- Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A. Indium–Tin Oxide Surface Treatments: Effects on the Performance of Liquid Crystal Devices. Materials Sci. Eng. C 2006, 26, 538–541. [Google Scholar] [CrossRef]
- Son, I.; Yoo, J.Y.; Kim, J.H.; Lee, B.; Kim, C.; Lee, J.H. Vertical Alignment of Liquid Crystal Using an in Situ Self-Assembled Molecular Layer on Hydrophilic ITO Electrodes. Ferroelectrics 2016, 495, 174–180. [Google Scholar] [CrossRef]
- Di, H.; Jiang, W.; Sun, H.; Zhao, C.; Liao, F.; Zhao, Y. Effects of ITO Substrate Hydrophobicity on Crystallization and Properties of MAPbBr3 Single-Crystal Thin Films. ACS Omega 2020, 5, 23111–23117. [Google Scholar] [CrossRef]
- Bayoudh, S.; Othmane, A.; Bettaieb, F.; Bakhrouf, A.; Ouada, H.B.; Ponsonnet, L. Quantification of the Adhesion Free Energy between Bacteria and Hydrophobic and Hydrophilic Substrata. Mater. Sci. Eng. C 2006, 26, 300–305. [Google Scholar] [CrossRef]
- Arya, P.; Wu, Y.; Wang, F.; Wang, Z.; Cadilha Marques, G.; Levkin, P.A.; Nestler, B.; Aghassi-Hagmann, J. Wetting Behavior of Inkjet-Printed Electronic Inks on Patterned Substrates. Langmuir 2024, 40, 5162–5173. [Google Scholar] [CrossRef]
- Paloly, A.R.; Satheesh, M.; Martínez-Tomás, M.C.; Muñoz-Sanjosé, V.; Rajappan Achary, S.; Bushiri, M.J. Growth of Tin Oxide Thin Films Composed of Nanoparticles on Hydrophilic and Hydrophobic Glass Substrates by Spray Pyrolysis Technique. Appl. Surf. Sci. 2015, 357, 915–921. [Google Scholar] [CrossRef]
- Good, R.J.; Girifalco, L.A. A THEORY FOR ESTIMATION OF SURFACE AND INTERFACIAL ENERGIES. III. ESTIMATION OF SURFACE ENERGIES OF SOLIDS FROM CONTACT ANGLE DATA. J. Phys. Chem. 1960, 64, 561–565. [Google Scholar] [CrossRef]
- Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir 2014, 30, 8598–8606. [Google Scholar] [CrossRef]
- Cho, K.; Kim, D.; Yoon, S. Effect of Substrate Surface Energy on Transcrystalline Growth and Its Effect on Interfacial Adhesion of Semicrystalline Polymers. Macromolecules 2003, 36, 7652–7660. [Google Scholar] [CrossRef]
- Gebremichael, Z.T.; Ugokwe, C.; Alam, S.; Stumpf, S.; Diegel, M.; Schubert, U.S.; Hoppe, H. How Varying Surface Wettability of Different PEDOT:PSS Formulations and Their Mixtures Affects Perovskite Crystallization and the Efficiency of Inverted Perovskite Solar Cells. RSC Adv. 2022, 12, 25593–25604. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Lin, X.; Huang, W. Effect of Substrate Wettability and Surface Structure on Nucleation of Crystal. J. Mater. Sci. Technol. 2012, 28, 859–864. [Google Scholar] [CrossRef]
- Zeng, Q. A Simple Method for Estimating the Size of Nuclei on Fractal Surfaces. J. Cryst. Growth 2017, 475, 49–54. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, K.; Jiang, X.; Wang, Y.; Ge, Y.; Wu, L.; Xu, S.; Bao, Q.; Zhang, H. Nonlinear Optical Absorption and Ultrafast Carrier Dynamics of Copper Antimony Sulfide Semiconductor Nanocrystals. J. Mater. Chem. C 2018, 6, 8977–8983. [Google Scholar] [CrossRef]
- Dekhil, S.; Dahman, H.; Rabaoui, S.; Yaacoub, N.; El Mir, L. Investigation on Microstructural and Optical Properties of CuSbS2 Nanoparticles Synthesized by Hydrothermal Technique. J. Mater. Sci. Mater. Electron. 2017, 28, 11631–11635. [Google Scholar] [CrossRef]
- Dekhil, S.; Dahman, H.; Ghribi, F.; Mortada, H.; Yaacoub, N.; El Mir, L. Study of CuSbS2 Thin Films Nanofibers Prepared by Spin Coating Technique Using Ultra Pure Water as a Solvent. Mater. Res. Express 2019, 6, 086450. [Google Scholar] [CrossRef]
- Borrelli, D.C.; Lee, S.; Gleason, K.K. Optoelectronic Properties of Polythiophene Thin Films and Organic TFTs Fabricated by Oxidative Chemical Vapor Deposition. J. Mater. Chem. C 2014, 2, 7223. [Google Scholar] [CrossRef]
- Emir, C.; Tataroglu, A.; Gökmen, U.; Ocak, S.B. Analysis of the Structural and Optical Characteristics of ZnSe Thin Films as Interface Layer. J. Mater. Sci. Mater. Electron. 2025, 36, 168. [Google Scholar] [CrossRef]
- Maeda, T.; Wada, T. First-Principles Study of Electronic Structure of CuSbS2 and CuSbSe2 Photovoltaic Semiconductors. Thin Solid Film. 2015, 582, 401–407. [Google Scholar] [CrossRef]
- Chalapathi, U.; Poornaprakash, B.; Ahn, C.-H.; Park, S.-H. Two-Stage Processed CuSbS2 Thin Films for Photovoltaics: Effect of Cu/Sb Ratio. Ceram. Int. 2018, 44, 14844–14849. [Google Scholar] [CrossRef]
Samples | FWHM (Degrees) | Crystal Size (nm) |
---|---|---|
CAS-FTO | 0.15 | 30 |
CAS-ITO | 0.27 | 21 |
CAS-glass | 0.40 | 16 |
Sample | Rq (nm) | Contact Angle (°) |
---|---|---|
FTO | 20 | 65 ± 5 |
ITO | 39 | 110 ± 5 |
Glass | 0.17 | 30 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapouri, S.; Irani, E.; Rajabi Kalvani, P.; Pasini, S.; Foti, G.; Parisini, A.; Bosio, A. Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis. Coatings 2025, 15, 683. https://doi.org/10.3390/coatings15060683
Shapouri S, Irani E, Rajabi Kalvani P, Pasini S, Foti G, Parisini A, Bosio A. Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis. Coatings. 2025; 15(6):683. https://doi.org/10.3390/coatings15060683
Chicago/Turabian StyleShapouri, Samaneh, Elnaz Irani, Payam Rajabi Kalvani, Stefano Pasini, Gianluca Foti, Antonella Parisini, and Alessio Bosio. 2025. "Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis" Coatings 15, no. 6: 683. https://doi.org/10.3390/coatings15060683
APA StyleShapouri, S., Irani, E., Rajabi Kalvani, P., Pasini, S., Foti, G., Parisini, A., & Bosio, A. (2025). Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis. Coatings, 15(6), 683. https://doi.org/10.3390/coatings15060683