Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Base Asphalt
2.1.2. BW-HPM High-Viscosity Modifier
2.1.3. Nano-TiO2
2.1.4. Preparation of Nano-TiO2-Modified Asphalt
2.2. Experimental Methods
2.2.1. Physical Property Tests
2.2.2. Temperature Sweep Test
2.2.3. Frequency Sweep Test
2.2.4. Multi-Stress Creep Recovery (MSCR) Test
2.2.5. Bending Creep Stiffness Test
2.2.6. Long-Term Aging Performance Test
2.2.7. Scanning Electron Microscope (SEM) Test
2.2.8. Fourier Transform Infrared Spectroscopy (FTIR) Test
3. Results and Discussion
3.1. Physical Property
3.2. Temperature Sweep Tests
3.3. Frequency Sweep Test
3.4. Multi-Stress Creep Recovery (MSCR) Test
3.4.1. Burgers Model
3.4.2. Fractional Derivative Empirical Creep Model
3.4.3. Model Fitting Analysis
3.5. Bending Creep Stiffness Test
3.6. Long-Term Aging Performance
3.7. Modification Mechanism of Nano-TiO2-Modified Asphalt
3.7.1. SEM
3.7.2. FTIR
4. Conclusions
- (a)
- The heightened temperature tolerance of the nano-TiO2 high-viscosity modified asphalt has been improved, the anti-rutting ability has been enhanced, and the crack resistance performance at lower temperature has decreased.
- (b)
- The results of temperature scanning tests and frequency scanning tests show that nano titanium dioxide can significantly improve the heightened temperature tolerance of bitumen binders. The sensitivity of the bitumen binder is reduced, and the elastic characteristics of the bitumen are improved. In the logarithmic coordinate system, the complex shear modulus exhibits an excellent linear correlation with the angular frequency. However, under low-temperature conditions, nano-TiO2 gradually enhances the creep stiffness of the bitumen binder, indicating that nano-TiO2 makes the bitumen brittle and more liable to cracking at lower temperatures.
- (c)
- The fitting analysis of the MSCR results of NHV-modified asphalt using the Burgers model and the FDEC model shows that both these two models can fit the creep deformation of nano-TiO2 high-viscosity modified asphalt well, but the FDEC model has higher accuracy and fewer parameters. The parameters have certain physical meanings, among which can represent the ability index of modified asphalt to resist unrecoverable deformation at high temperatures.
- (d)
- In addition to the rheological characteristics of the bitumen binder, critical mechanical characteristic aspects like fatigue life, tensile strength, rutting resistance, and fracture toughness in the field are very important. In future research, these indicators will be thoroughly studied to explore the practical applicability of nano-TiO2-modified asphalt in real-world pavement design.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Nuruzzaman, M. Urban heat island: Causes, effects and mitigation measures-a review. Int. J. Environ. Monit. Anal. 2015, 3, 67–73. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. J. 2023 IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012038. [Google Scholar] [CrossRef]
- Chathuranga, S.; Chandana Jayaratne, K.P.S. A systematic review of urban heat island impact on selected Asian cities. Chandana Jayaratne. Proc. Tech. Sess. 2025, 41, 87–95. [Google Scholar]
- Li, H.; Wang, H.; Lin, J.; Yang, J.; Yao, Y. Study on the Effect of SBS/HVA/CRM Composite-Modified Asphalt on the Performance of Recycled Asphalt Mixtures. Polymers 2024, 16, 3226. [Google Scholar] [CrossRef]
- Xie, T.; He, Z.; Yu, H.; Ma, Y.; Shi, C.; Zhang, C.; Ge, J.; Dai, W. Evaluation of styrene butadiene rubber asphalt modification mechanism and adhesion effect based on molecular simulation. Fuel 2024, 364, 131023. [Google Scholar] [CrossRef]
- Li, E.; Xu, W.; Zhang, Y. Performance study of waste pe-modified high-grade asphalt. Polymers 2023, 15, 3200. [Google Scholar] [CrossRef]
- Ji, H.; He, D.; Li, B.; Lu, G.; Wang, C. Evaluation of rheological and anti-aging properties of TPU/Nano-TiO2 composite-modified asphalt binder. Materials 2022, 15, 3000. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, P.; Zhai, M. Analysis of Nano-ZnO-modified asphalt compatibility based on molecular dynamics. Materials 2023, 16, 4710. [Google Scholar] [CrossRef]
- Kyriakodis, G.-E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates-results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Sha, A.; Liu, Z.; Tang, K.; Li, P. Solar heating reflective coating layer (SHRCL) to cool the asphalt pavement surface. Constr. Build. Mater. 2017, 139, 355–364. [Google Scholar] [CrossRef]
- Singh, H.; Thind, P.S.; Singh, S.; John, S. Applicability of TiO2-Laden asphalt pavements in reducing the vehicular pollution of chandigarh, India. Clean-Soil Air Water 2022, 50, 5. [Google Scholar] [CrossRef]
- Carneiro, J.O.; Azevedo, S.; Teixeira, V.; Fernandes, F.; Freitas, E.; Silva, H.; Oliveira, J. Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles. Constr. Build. Mater. 2013, 38, 594–601. [Google Scholar] [CrossRef]
- Xu, X.; Wei, L.; Chen, J.; Rong, H. Physical, rheological and micro characteristics of ARA/Nano-TiO2 composite modified asphalt before and after short-term aging. Mater. Today Commun. 2024, 39, 109097. [Google Scholar] [CrossRef]
- Enieb, M.; Cengizhan, A.; Karahancer, S.; Eltwati, A. Evaluation of physical-rheological properties of nano titanium dioxide modified asphalt binder and rutting resistance of modified mixture. Int. J. Pavement Res. Technol. 2023, 16, 285–303. [Google Scholar] [CrossRef]
- Diniz, M.I.L.; Lucena, A.E.d.F.L.; Neto, O.d.M.M.; Moraes, T.M.R.P.d.; Sousa, T.M.d.; Silva, I.M.; F’elix, C.T.R. Titanium dioxide as a modifier in asphalt mixtures: Mechanical behavior under aging conditions. Constr. Build. Mater. 2025, 461, 139816. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, D.; Zhang, Y.; Zhang, H.; Zhang, S. Influence of multi-dimensional nanomaterials composite form on thermal and ultraviolet oxidation aging resistances of SBS modified asphalt. Constr. Build. Mater. 2021, 273, 122054. [Google Scholar] [CrossRef]
- Lima, O.; Afonso, C.; Segundo, I.; Landi, S., Jr.; Homem, N.; Freitas, E.; Alcantara, A.; Branco, V.; Soares, S.; Soares, J.; et al. Aging evaluation of an asphalt binder modified by nano-TiO2. Nanomaterials 2022, 12, 1678. [Google Scholar] [CrossRef]
- Zheng, D.; Qian, Z.; Li, P.; Wang, L. Performance evaluation of high-elasticity asphalt mixture containing inorganic nano-titanium dioxide for applications in high altitude regions. Constr. Build. Mater. 2019, 199, 594–600. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communications Press: Beijing, China, 2011.
- Bahia, H.; Hanson, D.; Zeng, M.; Zhai, H.; Khatri, M.; Anderson, R. NCHRP REPORT 459: Characterization of Modified Asphalt Binders in Superpave Mix Design. 2001. Available online: https://onlinepubs.trb.org/Onlinepubs/nchrp/nchrp_rpt_459-a.pdf (accessed on 10 May 2025).
- Yang, Q.; Liu, Q.; Zhong, J.; Hong, B.; Wang, D.; Oeser, M. Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Constr. Build. Mater. 2019, 201, 580–589. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, C.; Gao, F.; Li, T.; Tan, Y. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Constr. Build. Mater. 2016, 127, 466–474. [Google Scholar] [CrossRef]
- Lv, M.; Li, H.; Zhang, S.; Liu, W.; Zhang, H.; Lin, H.; Sun, M. Evolution of rheological and microscopic properties of asphalt binders under fuel corrosion. Processes 2024, 12, 403. [Google Scholar] [CrossRef]
- AASHTO T 313-22—Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); AASHTO: Washington, DC, USA, 2022.
- Yang, J.; Xu, G.; Kong, P.; Chen, X. Characterization of desulfurized crumb rubber/styrene-butadiene-styrene composite modified asphalt based on rheological properties. Materials 2021, 14, 3780. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Z.; Guo, M.; Zhang, S. Using the Rheological Index to Quantitatively Evaluate the Mechanical Performance of High-Elasticity Modified Asphalt. Adv. Mater. Sci. Eng. 2021, 6614644. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Yin, B.; Luo, W. A nonlinear fractional viscoelastic-plastic creep model of asphalt mixture. Polymers 2021, 13, 1278. [Google Scholar] [CrossRef]
- Klimczak, M. Viscoelastic analysis of asphalt concrete with a digitally reconstructed microstructure. Materials 2024, 17, 2443. [Google Scholar] [CrossRef]
- Makris1, N.; Constantinou, M.C. Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng. 1991, 117, 2708–2724. [Google Scholar] [CrossRef]
- Sasso, M.; Palmieri, G.; Amodio, D. Application of fractional derivative models in linear viscoelastic problems mech time-depend Mater. Mech. Time-Depend. Mater. 2011, 15, 367–387. [Google Scholar]
- Brociek, R.; Hetmaniok, E.; Słota, D. Numerical solution for the heat conduction model with a fractional derivative and temperature-dependent parameters. Symmetry 2024, 16, 667. [Google Scholar] [CrossRef]
- Riaz, M.; Khan, Z.A.; Ahmad, S.; Ateya, A.A. Fractional-order dynamics in epidemic disease modeling with advanced perspectives of fractional calculus. Fractal Fract. 2024, 8, 291. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.L. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations (North Holland Mathematics Studies); Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Average Size (nm) | Purity (%) | Specific Surface Area (m2/g) | Bulk Density (g/cm3) | Density (g/cm3) | |
---|---|---|---|---|---|
Nano- TiO2 | 20 | 99.9 | 70–90 | 0.22 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Yuan, Y.; Ma, Y.; Wang, Z.; Zhou, S.; Li, L. Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt. Coatings 2025, 15, 717. https://doi.org/10.3390/coatings15060717
Li R, Yuan Y, Ma Y, Wang Z, Zhou S, Li L. Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt. Coatings. 2025; 15(6):717. https://doi.org/10.3390/coatings15060717
Chicago/Turabian StyleLi, Ruiduo, Yanzhao Yuan, Yabing Ma, Zhigang Wang, Shikang Zhou, and Liqin Li. 2025. "Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt" Coatings 15, no. 6: 717. https://doi.org/10.3390/coatings15060717
APA StyleLi, R., Yuan, Y., Ma, Y., Wang, Z., Zhou, S., & Li, L. (2025). Study on Rheological Properties of Nano Titanium Dioxide High-Viscosity Modified Asphalt. Coatings, 15(6), 717. https://doi.org/10.3390/coatings15060717