Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Polypyrrolidone and Polydopamine Growth on Nanomaterials in Water
2.3. Ultraviolet-Visible Spectroscopy
2.4. Turbidimetry and Dynamic Light Scattering
2.5. CE-UV Analysis
3. Results and Discussion
3.1. Model Nanomaterial
3.2. Polyvinylpyrrolidone Growth on Nanomaterial in Water
3.3. UV-Visible Spectroscopy
3.4. Turbidimetry
3.5. Dynamic Light Scattering (DLS)
3.6. CE-UV Analysis
3.7. Polydopamine Coating
Sample components | Wavelength of maximum absorbance (nm) | Maximum absorbance (a.u.) | Color |
---|---|---|---|
50 µL of VP + 1.50 mL of 22.5 wt% SiO2 | 298 | 3.31 | Light brown |
40 µL of VP + 1.25 mL of 22.5 wt% SiO2 | 492 | 3.56 | Dark brown |
30 µL of VP + 1.00 mL of 22.5 wt% SiO2 | 525 | 4.64 | Very dark brown |
20 µL of VP + 0.75 mL of 22.5 wt% SiO2 | 599 | 4.52 | Black |
2 mL of 22.5 wt% SiO2 | 230 | 4.12 | Colorless |
3.8. Electron Microscopy
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aillon, K.L.; Xie, Y.; El-Gendy, N.; Berkland, C.J.; Forresta, M.L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61, 457–466. [Google Scholar]
- Maynard, A.D. Nanotechnology: A Research Strategy for Addressing Risk; Woodrow Wilson International Centre for Scholars: Washington, DC, USA, 2006; pp. 1–45. [Google Scholar]
- Organization of Economic Co-operation and Development. Six Years of OECD Work on the Safety of Manufactured Nanomaterials: Achievements and Future Opportunities. Available online: http://www.oecd.org/env/ehs/nanosafety/Nano%20Brochure%20Sept%202012%20for%20Website%20%20(2).pdf (accessed on 28 April 2014).
- Biskos, G.; Schmidt-Ott, A. Airborne engineered nanoparticles: Potential risks and monitoring challenges for assessing their impacts on children. Paediatr. Respir. Rev. 2012, 13, 79–83. [Google Scholar] [CrossRef]
- Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013, 166, 182–194. [Google Scholar] [CrossRef]
- Rezić, I. Determination of engineered nanoparticles on textiles and in textile wastewaters. TrAC Trends Anal. Chem. 2011, 30, 1159–1167. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Photoelectrocatalytic technologies for environmental applications. J. Photochem. Photobiol. A Chem. 2012, 238, 41–52. [Google Scholar] [CrossRef]
- Figueira, F.; Cavaleiro, J.A.S.; Tomé, J.P.C. Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies. J. Porphyr. Phthalocyanines 2011, 15, 517–533. [Google Scholar] [CrossRef]
- Kumar, P.; Fennell, P.; Robins, A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritizing research and regulation activities. J. Nanopart. Res. 2010, 12, 1523–1530. [Google Scholar] [CrossRef]
- Valcárcel, M. Nanoparticles in the water cycle—Properties, analysis, and environmental relevance. Anal. Bioanal. Chem. 2011, 400, 2679–2680. [Google Scholar] [CrossRef]
- Weinberg, H.; Galyean, A.; Leopold, M. Evaluating engineered nanoparticles in natural waters. TrAC Trends Anal. Chem. 2011, 30, 72–83. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef]
- Bhatt, I.; Tripathi, B.N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 2011, 82, 308–317. [Google Scholar] [CrossRef]
- Dekkers, S.; Bouwmeester, H.; Bos, P.M.J.; Peters, R.J.B.; Rietveld, A.; Oomen, A.G. Knowledge gaps in risk assessment of nanosilica in food: Evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology 2013, 7, 367–377. [Google Scholar] [CrossRef]
- Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y.; de la Fuente, J.M.; Liang, X.J.; Parak, W.J.; del Pino, P. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small 2013, 9, 1573–1584. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Miranda, O.R.; Thompson, M.A.; Pabelick, C.M.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Prakash, Y.S.; Mukherjee, P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010, 10, 2543–2548. [Google Scholar] [CrossRef]
- Passagne, I.; Morille, M.; Rousset, M.; Pujalté, I.; L’azou, B. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology 2012, 299, 112–124. [Google Scholar] [CrossRef]
- Duan, J.; Yu, Y.; Li, Y.; Yu, Y.; Sun, Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 2013, 34, 5853–5862. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, D.; Jing, L.; Cui, G.; Jin, M.; Li, Y.; Liu, X.; Liu, Y.; Du, H.; Guo, C.; et al. Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc. Toxicol. 2013, 13, 194–207. [Google Scholar] [CrossRef]
- Lu, X.; Jin, T.; Jin, Y.; Wu, L.; Hu, B.; Tian, Y.; Fan, X. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice. Nanotechnology 2013, 24. [Google Scholar] [CrossRef]
- Guo, M.; Xu, X.; Yan, X.; Wang, S.; Gao, S.; Zhu, S. In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice. J. Hazard. Mater. 2013, 260, 780–788. [Google Scholar] [CrossRef]
- De Simone, U.; Manzo, L.; Profumo, A.; Coccini, T. In vitro toxicity evaluation of engineered cadmium-coated silica nanoparticles on human pulmonary cells. J. Toxicol. 2013, 2013, 931785:1–931785:10. [Google Scholar]
- Mortensen, N.P.; Hurst, G.B.; Wang, W.; Foster, C.M.; Nallathamby, P.D.; Retterer, S.T. Dynamic development of the protein corona on silica nanoparticles: Composition and role in toxicity. Nanoscale 2013, 5, 6372–6380. [Google Scholar] [CrossRef]
- Measuring and Removing Nanoparticles in Semiconductor Processing Water. Available online: http://www.electronicsnews.com.au/news/measuring-and-removing-nanoparticles-in-semiconduc (accessed on 28 April 2014).
- Sun, Q.; Li, Y.; Tang, T.; Yuan, Z.; Yu, C. Removal of silver nanoparticles by coagulation processes. J. Hazard. Mater. 2013, 261, 414–420. [Google Scholar] [CrossRef]
- Liu, Y.; Tourbin, M.; Lachaize, S.; Guiraud, P. Silica nanoparticle separation from water by aggregation with AlCl3. Ind. Eng. Chem. Res. 2013. [Google Scholar] [CrossRef]
- Liu, Y.; Tourbin, M.; Lachaize, S.; Guiraud, P. Silica nanoparticles separation from water: Aggregation by cetyltrimethyl-ammonium bromide (CTAB). Chemosphere 2013, 92, 681–687. [Google Scholar] [CrossRef]
- Yazhgur, P.A.; Noskov, B.A.; Liggieri, L.; Lin, S.Y.; Loglio, G.; Millere, R.; Ravera, F. Dynamic properties of mixed nanoparticle/surfactant adsorption layers. Soft Matter 2013, 9, 3305–3314. [Google Scholar] [CrossRef]
- McClanahan, J.S.; Lin, Y.C.; Digenis, G.A. Disposition of N-vinyl-2-pyrrolidnone in the rat. Drug Chem. Toxical. 1984, 7, 129–148. [Google Scholar] [CrossRef]
- Liparoti, S.; Adami, R.; Caputo, G.; Reverchon, E. Supercritical assisted atomization: Polyvinylpyrrolidone as carrier for drugs with poor solubility in water. J. Chem. 2013, 2013, 801069:1–801069:5. [Google Scholar]
- Lee, H.; Lee, S.; Xu, C. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 2008, 19. [Google Scholar] [CrossRef]
- Deguchi, T.; Yamano, H.; Iwamoto, M. Dynamics of direct H2O2 synthesis from H2 and O2 on a Pd nano-particle catalyst protected with polyvinylpyrrolidone. J. Catal. 2012, 2487, 55–61. [Google Scholar]
- Mu, Q.; Hondow, N.S.; Krzemiński, L.; Brown, A.P.; Jeuken, L.J.C.; Routledge, M.N. Mechanism of cellular uptake of genotoxic silica nanoparticles. Part. Fibre Toxicol. 2012, 9, 29:1–29:11. [Google Scholar]
- LUDOX® AM colloidal silica. Available online: http://www.sigmaaldrich.com/catalog/product/aldrich/420875?lang=en®ion=CA (accessed on 28 April 2014).
- Petr, J.; Varenne, A.; Teste, B.; Descroix, S.; Siaugue, J.M.; Gareil, P.A. Separation of alpha-lactalbumin grafted- and non-grafted maghemite core/silica shell nanoparticles by capillary zone electrophoresis. Electrophoresis 2010, 31, 2754–2761. [Google Scholar] [CrossRef]
- Ryu, S.; Bae, W.M.; Hong, W.J.; Ihn, K.; Jung, Y.M. Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy. J. Vib. Spectrosc. 2011, 60, 168–172. [Google Scholar]
- Rahman, I.; Padavettan, V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites. J. Nanomater. 2012, 2012, 132424:1–132424:15. [Google Scholar]
- Kim, J.; Lawler, D.F. Characteristics of zeta potential distribution in silica particles. Bull. Korean Chem. Soc. 2005, 26, 1083–1089. [Google Scholar] [CrossRef]
- Witteler, H.; Gotsche, M. Chemistry and Physicochemical Properties of Povidone. Available online: http://www.pharma-ingredients.basf.com/Documents/ENP/ExAct/Nr_002_1999-07_ExAct_02.pdf (accessed on 16 May 2014).
- Nathanson, S.D.; Zamfirescu, P.L.; Drew, S.I.; Wilbur, S. Two-step separation of human peripheral blood monocytes on discontinuous density gradients of colloidal silica-polyvinylpyrrolidinone. J. Immunol. Methods 1977, 18, 225–234. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar]
- Turro, N.J. Photochemistry of Enones and Dienones. Columbia University. Available online: http://turroserver.chem.columbia.edu/courses/MMP_Chapter_Updates/MMP+Ch11%20051404.pdf (accessed on 28 April 2014).
- Kim, I.; Kim, Y.; Lim, H.B. Turbidimetric measurement for on-line monitoring of SiO2 particles. Bull. Korean Chem. Soc. 2004, 25, 801–805. [Google Scholar] [CrossRef]
- Chang, C.W.; Tseng, W.L. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal. Chem. 2010, 82, 2696–2702. [Google Scholar] [CrossRef]
- Yeh, P.R.; Tseng, W.L. Human serum albumin-coated gold nanoparticles for selective extraction of lysozyme from real-world samples prior to capillary electrophoresis. J. Chromatogr. A 2012, 1268, 166–172. [Google Scholar]
- Lin, T.H.; Lu, C.Y.; Tseng, W.L. Selective enrichment of catecholamines using iron oxide nanoparticles followed by CE with UV detection. Electrophoresis 2013, 34, 297–303. [Google Scholar] [CrossRef]
- Iqbal, Z.; Lai, E.P.C. Investigation of polydopamine growth on nanomaterials in water. J. Nanomater. Mol. Nanotechnol. 2013, 2, 1–6. [Google Scholar]
- Mu, Q.; Yang, L.; Davis, J.C.; Vankayala, R.; Hwang, K.C.; Zhao, J.; Yan, B. Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. Biomaterials 2010, 31, 5083–5090. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lai, E.P.C.; Iqbal, Z.; Nour, S. Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation. Coatings 2014, 4, 340-355. https://doi.org/10.3390/coatings4020340
Lai EPC, Iqbal Z, Nour S. Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation. Coatings. 2014; 4(2):340-355. https://doi.org/10.3390/coatings4020340
Chicago/Turabian StyleLai, Edward P. C., Zafar Iqbal, and Sherif Nour. 2014. "Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation" Coatings 4, no. 2: 340-355. https://doi.org/10.3390/coatings4020340
APA StyleLai, E. P. C., Iqbal, Z., & Nour, S. (2014). Polymerization of Vinylpyrrolidone to Form a Neutral Coating on Anionic Nanomaterials in Aqueous Suspension for Rapid Sedimentation. Coatings, 4(2), 340-355. https://doi.org/10.3390/coatings4020340