Antifungal Edible Coatings for Fresh Citrus Fruit: A Review
Abstract
:1. Introduction
2. One Solution for Two Major Citrus Postharvest Problems
2.1. Physiological Problems
2.2. Pathological Problems
3. Generalities of Antifungal Edible Coatings
3.1. Films vs. Coatings
3.2. Components and Types of Matrixes
- Polysaccharides can form a continuous and cohesive matrix, which is related to their chemical structure by the association through hydrogen bonding of their polymeric chains [25]. Polysaccharides contain highly polar polymers with hydroxyl groups and present a good barrier to oxygen at low RH, but low moisture barrier due to hydrophilic properties [30]. Polysaccharide materials typically used to formulate edible or biodegradable coatings include cellulose, starch, pectin, chitosan, alginate, carrageenan, pullulan, and various gums [25,30,31,33,34,35,36,37,38,39,40,41,42,43,44].
- The ability of different proteins to form edible coatings is highly dependent on their molecular characteristics: molecular weight, conformation, electrical properties, flexibility, and thermal stability [45]. Edible coatings based on proteins usually exhibit good gas barrier characteristics, but poor water barrier characteristics due to their hydrophilic character [28,46,47]. Common proteins used for edible coating formulation include, among others, corn zein, casein, wheat gluten, soy protein, whey protein, keratin, or rice bran protein [26,30,47,48,49,50,51,52]. It is important to note that some people may present allergies or protein intolerances, e.g., to wheat gluten (celiac disease) or milk protein, which could restrict the use of protein-based coatings.
- Edible films and coatings based on hydrophobic substances, such as lipids and resins, are indicated to provide a barrier to moisture and gloss to food surfaces. However, since these materials are not polymers they form films and coating with poor mechanical properties and opaque characteristics [53]. Hydrophobic substances used as components of edible coatings include a variety of animal and vegetal native oils and fats, e.g., peanut, coconut, palm, lard, tallow, etc.; fractionated, concentrated, and/or reconstituted oils and fats, e.g., fatty acids, mono-, di-, and triglycerides, cocoa butter substitutes, etc.; hydrogenated and/or transesterified oils, e.g., margarine, shortenings, etc.; natural vegetal and animal waxes, e.g., beeswax, candelilla, carnauba, jojoba bees, rice bran, etc.; non-natural waxes, e.g., paraffins, oxidized or non-oxidized polyethylene; and natural resins, e.g., asafoetida, benjoin, chicle, guarana, myrrhe, olibanum (incense), opoponax, shellac resins, wood rosin, etc. [41,54,55,56,57].
- Composite coatings or blends typically contain hydrocolloid components, i.e., protein and/or polysaccharides, and lipids in order to combine the advantages of both types of components. Composite coatings can be produced as either bi-layer or stable emulsions. In bi-layer coatings, the lipid forms a second layer over the protein or polysaccharide layer. In emulsion coatings, the lipid is dispersed and entrapped in the supporting matrix of protein or polysaccharide [57,58,59]. In this type of coatings, the efficiency of lipid materials depends on the lipid structure, its chemical arrangement, hydrophobicity, physical state, and its interaction with other components of the film [53].
- Plasticizers are low molecular weight compounds of small size, high polarity, high amount of polar groups per molecule, and great distance between polar groups within a molecule. They are added to edible coating materials to decrease the intermolecular forces between polymer chains, which results in greater flexibility, elongation, toughness, and permeability [28,30,32,60]. They are, therefore, particularly indicated to form stable emulsions and improve mechanical properties when hydrocolloids and lipids are combined. Common plasticizers used for edible coatings include sucrose, glycerol, sorbitol, propylene glycol, polyethylene glycol, fatty acids, and monoglycerides. Water can also act as a plasticizer for polysaccharide and protein coatings [61].
- Emulsifiers or surfactants are agents of amphiphilic nature that interact at the water-lipid interface and reduce surface tension between the dispersed and continuous phases to improve the stability of the emulsion when hydrocolloids and lipids are combined [30]. Moreover, emulsifiers added to coating formulations promote good surface wetting, spreading, and adhesion of the coating to the food surface. Typical emulsifiers used on edible coatings are fatty acids, ethylene glycol monostearate, glycerol monostearate, esters of fatty acids, lecithin, sucrose ester, and sorbitan monostearate, or polysorbates (tweens).
3.3. Functional Properties of Edible Coatings
3.4. Types of Antifungal Ingredients
4. Chitosan and Chitosan-Based Citrus Coatings
Citrus Fruit | Coating | Concentration | Antimicrobial Agent | Target Pathogen | Antimocrobial Activity a | Reference |
---|---|---|---|---|---|---|
“Navel” orange, Lime | Chitosan | 2, 4, 6, 8 g·L−1 | Lemongrass oil, Citral (6, 8 mL·L−1) | Penicillium digitatum, Penicillium italicum | + | [80] |
Chitosan | – | Lemongrass oil, Citral | P. digitatum, P. italicum | + | ||
“Satsuma” mandarin | Chitosan | 1.0% | – | P. digitatum | + | [81] |
Chitosan | 1.0% | Clove oil (0.5 mL·L−1) | P. digitatum | - | ||
“Or” and “Mor” mandarins, “Star Ruby” grapefruit | CMC, chitosan | 1.0%, 1.5% | – | – | ND | [82] |
“Jincheng 447” orange | Oligochitosan | 1.5% | – | Colletotrichum gloeosporioides | + | [83] |
“Valencia” orange | Chitosan | 0.5% | – | P. digitatum | + | [84] |
“Washington Navel” orange | Chitosan | 0.5% | – | P. digitatum | + | – |
“Femminello” lemon | Chitosan | 0.5% | – | P. digitatum | + | – |
“Marsh Seedlees” grapefruit | Chitosan | 0.5% | – | P. digitatum | + | – |
“Navel Powell” orange | Chitosan | 2% | Bergamot, thyme and tea tree oils | P. italicum | + | [85] |
“Valencia” and ‘Pêra Rio” oranges | Chitosan, Chitosan + TBZ | 2% | – | Guignardia citricarpa | + | [34,86] |
Lime | Chitosan | 2, 4, 6, 8 g·L−1 | Citral (0, 2, 3, 4, 5 mL·L−1) | Geotrichum citri-aurantii | + | [87] |
“Navel” orange | Chitosan | 2% | – | P. digitatum, P. italicum | + | [77] |
“Murcott” tangor | Chitosan (high MW) | 0.05%, 0.1%, 0.2% | – | P. digitatum, P. italicum, Botrydiplodia lecanidion, Botrytis cinerea | + | [88] |
Chitosan (low MW) | 0.05%, 0.1%, 0.2% | – | P. italicum, B. lecanidion, B. cinerea | + | ||
“Tankan” tangor | Chitosan | 0.05%–0.2% | – | P. digitatum, P. italicum | - | [78] |
Lemon | Chitosan | 1 mg·mL−1 | – | P. digitatum | - | [89] |
“Fortune” mandarin, “Valencia” orange | Biorend® (chitosan comercial product) | – | – | – | + | [90] |
“Eureka” lemon | Glycolchitosan | 0.2% | Candida saitoana (108 CFU·mL−1) | P. digitatum | + | [91,92] |
“Washington Navel” orange | Glycolchitosan | 0.2% | C. saitoana (108 CFU·mL−1) | P. digitatum | + | – |
4.1. Stand-Alone Chitosan Coatings
4.2. Chitosan Coatings Amended with other Antifungal Ingredients
5. Citrus Coatings Formulated with GRAS salts
6. Citrus Coatings Formulated with Essential Oils
7. Citrus Coatings Formulated with Microbial Antagonists
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAO Statistical Yearbook 2013. Available online: http://www.fao.org/docrep/018/i3107e/i3107e03.pdf (accessed on 22 September 2015).
- Grierson, W.; Miller, W.M. Storage of Citrus Fruit. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source, Inc.: Longboak Key, FL, USA, 2006; pp. 547–581. [Google Scholar]
- Alférez, F.; Agustí, M.; Zacarías, L. Postharvest rind staining in Navel oranges is aggravated by changes in storage relative humidity. Effect on respiration, ethylene production and water potential. Postharvest Biol. Technol. 2003, 28, 143–152. [Google Scholar] [CrossRef]
- Alférez, F.; Burns, J.K. Postharvest peel pitting at non-chilling temperatures in grapefruit is promoted by changes from low to high relative humidity during storage. Postharvest Biol. Technol. 2004, 32, 79–87. [Google Scholar] [CrossRef]
- Alférez, F.; Zacarías, L.; Burns, J.K. Low relative humidity at harvest and before storage at high humidity influence the severity of postharvest peel pitting in citrus. J. Am. Soc. Hortic. Sci. 2005, 130, 225–231. [Google Scholar]
- Alférez, F.; Alquezara, B.; Burns, J.K.; Zacarías, L. Variation in water, osmotic and turgor potential in peel of ‘Marsh’ grapefruit during development of postharvest peel pitting. Postharvest Biol. Technol. 2010, 56, 44–49. [Google Scholar] [CrossRef]
- Grierson, W. Physiological Disorders. In Fresh Citrus Fruits, 1st ed.; Wardowski, W.F., Nagy, S., Grierson, W., Eds.; AVI: New York, NY, USA, 1986; pp. 361–378. [Google Scholar]
- Vercher, R.; Tadeo, F.R.; Almela, V.; Zaragoza, S.; Primo-Millo, E.; Agustí, M. Rind structure, epicuticular wax morphology and water permeability of ‘Fortune’ mandarin fruits affected by peel pitting. Ann. Bot. 1994, 74, 619–62. [Google Scholar] [CrossRef]
- Dou, H.; Zhang, J.; Ismail, M.A.; Ritenour, M.A. Postharvest factors influencing stem-end rind breakdown (SERB) of Valencia oranges. Proc. Fla. State. Hort. Soc. 2001, 114, 164–169. [Google Scholar]
- Porat, R.; Weiss, B.; Cohen, L.; Daus, A.; Aharoni, N. Reduction of postharvest rind disorders in citrus fruit by modified atmosphere packaging. Postharvest Biol. Technol. 2004, 33, 35–43. [Google Scholar] [CrossRef]
- Petracek, P.D.; Kelsey, D.F.; Grierson, W. Physiological Disorders. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source, Inc.: Longboak Key, FL, USA, 2006; pp. 397–419. [Google Scholar]
- Scherrer Montero, C.R.; Schwarz, L.L.; Cunha dos Santos, L.; Pires dos Santos, R.; Bender, R.J. Oleocellosis incidence in citrus fruit in response to mechanical injuries. Sci. Hortic. 2012, 134, 227–231. [Google Scholar] [CrossRef]
- Eckert, J.W.; Eaks, I.L. Postharvest Disorders and Diseases of Citrus Fruits. In The Citrus Industry; Reuter, W., Calavan, E.C., Carman, G.E., Eds.; Division of Agriculture and Natural Resources, University of California Press: Berkeley, CA, USA, 1989; pp. 179–260. [Google Scholar]
- Snowdon, A.L. A Color Atlas of Post-harvest Diseases and Disorders of Fruits and Vegetables, Volume 1; General Introduction and Fruits; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Elsevier: London, UK, 2014; pp. 45–102. [Google Scholar]
- Kanetis, L.; Förster, H.; Adaskaveg, J.E. Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mold. Plant Dis. 2007, 91, 1502–1511. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Brown, G.E.; Eckert, J.W. The Biology and Control of Postharvest Diseases. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source Inc.: Longboat Key, FL, USA, 2006; pp. 339–396. [Google Scholar]
- Green, F.M. The infection of oranges by Penicillium. J. Pom. Hortic. Sci. 1932, 10, 184–215. [Google Scholar]
- Lahlali, R.; Serrhini, M.N.; Friel, D.; Jijakli, M.H. In vitro effects of water activity, temperature and solutes on the growth rate of P. italicum Wehmer and P. digitatum Sacc. J. Appl. Microbiol. 2006, 101, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, E.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; Shapira, R. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Bajwa, B.E.; Anjum, F.M. Improving storage performance of Citrus reticulata Blanco mandarins by controlling some physiological disorders. Int. J. Food Sci. Technol. 2007, 42, 459–501. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Nisperos-Carriedo, M.O.; Baker, R.A. Edible coatings for lightly processed fruits and vegetables. HortScience 1995, 30, 35–38. [Google Scholar]
- Hagenmaier, R.; Goodner, K.; Roussef, R.; Dou, H. Storage of ‘Marsh’ Grapefruit and ‘Valencia’ oranges with different coatings. Proc. Fla. State. Hort. Soc. 2002, 115, 303–308. [Google Scholar]
- Krochta, J.M. Proteins as raw materials for films and coatings: Definitions, Current Status, and Opportunities. In Protein-Based Films and Coatings; Gennadios, A., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 1–41. [Google Scholar]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Han, J.H. Edible Films and Coatings: A Review. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Elsevier: London, UK, 2014; pp. 213–255. [Google Scholar]
- Nisperos-Carriedo, M.O. Edible Coatings and Films Based on Polysaccharides. In Edible Coatings and Films to Improve Food Quality; Krochta, J.M., Baldwin, E.A., Nisperos-Carriedo, M.O., Eds.; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1994; pp. 305–335. [Google Scholar]
- Cha, D.; Chinnan, M. Biopolymer-based antimicrobial packaging: A review. Crit. Rev. Food Sci. 2004, 44, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Gennadios, A. Edible Films and Coatings: A review. In Innovations in Food Packaging, 1st ed.; Han, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 239–262. [Google Scholar]
- Pérez-Gago, M.B.; González-Aguilar, G.A.; Olivas, G.I. Edible coatings for fruits and vegetables. Stewart Postharv. Rev. 2010, 6, 1–14. [Google Scholar] [CrossRef]
- Zaritzky, N. Edible Coatings to Improve Food Quality and Safety. In Food Engineering Interfaces; Aguilera, J.M., Simpson, R., Welti-Chanes, J., Bermúdez Aguirre, D., Barbosa-Cánovas, G.V., Eds.; Springer-Verlag: New York, USA, 2011; pp. 631–659. [Google Scholar]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Rappussi, M.C.C.; Benato, E.A.; Cia, P.; Pascholati, S.F. Chitosan and fungicides on postharvest control of guignardia citricarpa and on quality of ‘Pêra Rio’ oranges. Summa Phytopathol. 2011, 37, 142–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Rempel, C.; McLaren, D. Edible Coating and Film Materials: Carbohydrates. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Elsevier: London, UK, 2014; pp. 305–323. [Google Scholar]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, Y. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr. Rev. Food Sci. F. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Serrano, M.; Valero, D. Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technol. 2011, 5, 2990–2997. [Google Scholar] [CrossRef]
- Meng, X.; Yang, L.; Kennedy, J.F.; Tian, S. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr. Polym. 2010, 81, 70–75. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Sarantópoulos, C.I.; Carmello-Guerreiro, S.M.; Hubinger, M.D. Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh-cut melon. Food Bioprocess Technol. 2013, 6, 80–91. [Google Scholar] [CrossRef]
- Pérez-Gallardo, A.; García-Almendárez, B.; Barbosa-Cánovas, G.; Pimentel-González, D.; Reyes-González, L.R.; Regalado, C. Effect of starch-beeswax coatings on quality parameters of blackberries (Rubus spp.). J. Food Sci. Technol. 2014, 52, 5601–5610. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Y.; Chen, C.H.; Lai, L.S. Effect of tapioca starch/decolorized hsian-tsao leaf gum-based active coatings on the qualities of fresh-cut apples. Food Bioprocess Technol. 2013, 6, 2059–2069. [Google Scholar] [CrossRef]
- Lima, A.M.; Cerqueira, M.A.; Souza, B.W.S.; Santos, E.C.M.; Teixeira, J.A.; Moreira, R.A.; Vicente, A.A. New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits—Influence on fruits gas transfer rate. J. Food Process. Eng. 2010, 97, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Tech. 2011, 22, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.; González-Martínez, C. Recent advance in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, E.A. Edible Coatings for Fresh Fruits and Vegetables: Past, Present, and Future. In Edible Coatings and Films to Improve Food Quality; Krochta, J.M., Baldwin, E.A., Nisperos-Carriedo, M.O., Eds.; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1994; pp. 25–64. [Google Scholar]
- Lacroix, M.; Vu, K.D. Edible Coating and Film Materials: Proteins. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Elsevier: London, UK, 2014; pp. 277–304. [Google Scholar]
- Pérez-Gago, M.B.; Serra, M.; Alonso, M.; Mateos, M.; del Río, M.A. Effect of solid content and lipid content of whey protein isolate-beeswax edible coatings on color change of fresh-cut apples. J. Food Sci. 2003, 68, 2186–2191. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Serra, M.; Alonso, M.; Mateos, M.; del Río, M.A. Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol. Technol. 2005, 36, 77–85. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Baker, R.A. Use of Protein in Edible Coatings for Whole and Minimally Processed Fruit and Vegetables. In Protein-Based Films and Coatings; Gennadios, A., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 501–515. [Google Scholar]
- De S. Medeiros, B.G.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Polysaccharide/protein nanomultilayer coatings: Construction, characterization and evaluation of their effect on ‘Rocha’pear (Pyrus communis L.) shelf-life. Food Bioprocess Technol. 2012, 5, 2435–2445. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Reichert, K.; Hammann, F.; Stäbler, A. Storage time-dependent alteration of molecular interaction-property relationships of whey protein isolate-based films and coatings. J. Mater. Sci. 2015, 50, 4396–4404. [Google Scholar] [CrossRef]
- Rhim, J.W.; Shellhammer, T.H. Lipid-Based Edible Films and Coatings. In Innovations in Food Packaging, 1st ed.; Han, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 362–383. [Google Scholar]
- Baldwin, E.A.; Nisperos-Carriedo, M.O.; Hagenmaier, R.D.; Baker, R.A. Use of lipids in coatings for food products. Food Technol. 1997, 51, 56–62. [Google Scholar]
- Debeaufort, F.; Voilley, A. Lipid-Based Edible Films and Coatings. In Edible Films and Coatings for Food Applications; Embuscado, M., Huber, K.C., Eds.; Springer-Verlag: New York, NY, USA, 2009; pp. 135–168. [Google Scholar]
- Galus, S.; Kadzinska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Rhim, J.W. Edible Coating and Film Materials: Lipid Bilayers and Lipid Emulsions. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Elsevier: London, UK, 2014; pp. 325–350. [Google Scholar]
- Pérez-Gago, M.B.; Krochta, J.M. Emulsion and Bi-Layer Edible Films. In Innovations in Food Packaging, 1st ed.; Han, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 384–402. [Google Scholar]
- Shellhammer, T.H.; Krochta, J.M. Whey protein emulsion film performance as affected by lipid type and amount. J. Food Sci. 1997, 62, 390–394. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Sothornvit, R.; Pérez-Gago, M.B. Effect of plasticizer type and amount on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno). J. Agric. Food Chem. 2008, 56, 9502–9509. [Google Scholar] [CrossRef] [PubMed]
- Krochta, J. Film Edible. In The Wiley Encyclopedia of Packaging Technology, 2nd ed.; Brody, A.L., Marsh, K.S., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 397–401. [Google Scholar]
- Shiekh, R.A.; Malik, M.A.; Al-Thabaiti, S.A.; Shiekh, M.A. Chitosan as a novel edible coating for fresh fruits. Food Sci. Technol. Res. 2013, 19, 139–155. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N. Agro-Polymers for Edible and Biodegradable Films: Review of Agricultural Polymeric Materials, Physical and Mechanical Characteristics, 1st ed.; Han, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 263–276. [Google Scholar]
- Krochta, J.M. Edible Protein Films and Coatings. In Food Proteins and Their Applications; Damodaran, S., Paraf, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1997; pp. 529–549. [Google Scholar]
- Franssen, L.R.; Krochta, J.M. Edible Coating Containing Natural Antimicrobials for Processed Foods. In Natural Antimicrobials for Minimal Processing of Foods; Roller, S., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 250–262. [Google Scholar]
- Arowora, K.A.; Williams, J.O.; Adetunji, C.O.; Fawole, O.B.; Afolayan, S.S.; Olaleye, O.O.; Adetunji, J.B.; Ogundele, B.A. Effects of Aloe vera coatings on quality characteristics of oranges stored under cold storage. Greener J. Agric. Sci. 2013, 3, 39–47. [Google Scholar]
- Kumar, S.; Bhatnagar, T. Studies to enhance the shelf life of fruits using Aloe vera based herbal coatings: A review. Int. J. Agric. Food Sci. Technol. 2014, 5, 211–218. [Google Scholar]
- Misir, J.; Brishti, F.H.; Hoque, M.M. Aloe vera gel as a novel edible coating for fresh fruits: A review. Am. J. Food Sci. Technol. 2014, 2, 93–97. [Google Scholar] [CrossRef]
- Saks, Y.; Barkai-Golan, R. Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol. Technol. 1995, 6, 159–165. [Google Scholar] [CrossRef]
- Jhalegar, J.; Sharma, R.R.; Singh, D. Antifungal efficacy of botanicals against major postharvest pathogens of Kinnow mandarin and their use to maintain postharvest quality. Fruits 2014, 69, 223–237. [Google Scholar] [CrossRef]
- European Union. Approximation of the laws of the member states concerning food additive authorized for use in foodstuffs intended for human consumption (89/107/EC). Official J. 1989, 40, 27–33. [Google Scholar]
- United States Food and Drug Administration. Food additives permitted for direct addition to food for human consumption, subpart c. Coatings, films and related substances. Code Fed. Reg. 2000, 3, 35–41, 21 CFR 172. [Google Scholar]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef] [PubMed]
- No, H.K.; Meyers, S.P.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Hafdani, F.N.; Sadeghinia, N. A review on application of chitosan as a natural antimicrobial. World Acad. Sci. Eng. Technol. 2011, 50, 252–256. [Google Scholar]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Zeng, K.; Deng, Y.; Ming, J.; Deng, L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic. 2010, 126, 223–228. [Google Scholar] [CrossRef]
- Chien, P.J.; Chou, C.C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of tankan citrus fruit (Citrus tankan Hayata). J. Sci. Food Agric. 2006, 86, 1964–1969. [Google Scholar] [CrossRef]
- Palma-Guerrero, J.; Jansson, H.B.; Salinas, J.; López-Llorca, L.V. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J. Appl. Microbiol. 2008, 104, 541–553. [Google Scholar] [CrossRef] [PubMed]
- El-Mohamedy, R.S.; El-Gamal, N.G.; Bakeer, A.R.T. Application of chitosan and essential oils as alternatives fungicides to control green and blue moulds of citrus fruits. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 629–643. [Google Scholar]
- Shao, X.; Cao, B.; Xu, F.; Xie, S.; Yu, D.; Wang, H. Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol. Technol. 2015, 99, 37–43. [Google Scholar] [CrossRef]
- Arnon, H.; Zaitsev, Y.; Porat, R.; Poverenov, E. Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol. Technol. 2014, 87, 21–26. [Google Scholar] [CrossRef]
- Deng, L.; Zeng, K.; Zhou, Y.; Huang, Y. Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. Eur. Food Res. Technol. 2014, 240, 795–804. [Google Scholar] [CrossRef]
- Panebianco, S.; Vitale, A.; Platania, C.; Restuccia, C.; Polizzi, G.; Cirvilleri, G. Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. J. Plant Dis. Protect. 2014, 121, 177–183. [Google Scholar]
- Cháfer, M.; Sánchez-González, L.; González-Martínez, C.; Chiralt, A. Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J. Food Sci. 2012, 77, E182–E187. [Google Scholar] [CrossRef] [PubMed]
- Rappussi, M.C.C.; Pascholati, S.F.; Benato, E.A.; Cia, P. Chitosan reduces infection by Guignardia citricarpa in postharvest ‘Valencia’ oranges. Braz. Arch. Biol. Technol. 2009, 52, 513–521. [Google Scholar] [CrossRef]
- Faten, M.A. Combination between citral and chitosan for controlling sour rot disease of lime fruits. Res. J. Agri. Biol. Sci. 2010, 6, 744–749. [Google Scholar]
- Chien, P.J.; Sheu, F.; Lin, H.R. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chem. 2007, 100, 1160–1164. [Google Scholar] [CrossRef]
- Benhamou, N. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: A comparison with the effect of chitosan. Phytopathology 2004, 94, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Galed, G.; Fernández-Valle, M.E.; Martínez, A.; Heras, A. Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. J. Magn. Reson. Im. 2004, 22, 127–137. [Google Scholar] [CrossRef] [PubMed]
- El-Ghaouth, A.; Smilanick, J.L.; Wilson, C.L. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol. Technol. 2000, 19, 103–110. [Google Scholar] [CrossRef]
- El-Ghaouth, A.; Smilanick, J.L.; Brown, G.E.; Ippolito, A.; Wisniewski, M.; Wilson, C.L. Application of Candida saitona and glycolchitosan for the control of postarvest disease of apple and citrus fruits under semi-commercial conditions. Plant Dis. 2000, 84, 243–248. [Google Scholar] [CrossRef]
- Abbas, H.; Abassi, N.A.; Yasin, T.; Maqbool, M.; Ahmad, T. Influence of irradiated chitosan coating on postharvest quality of kinnow (Citrus reticulata Blanco.). Asian J. Chem. 2008, 20, 6217–6227. [Google Scholar]
- Lu, L.; Liu, Y.; Yang, J.; Azat, R.; Yu, T.; Zheng, X. Quaternary chitosan oligomers enhance resistance and biocontrol efficacy of Rhodosporidium paludigenum to green mold in satsuma orange. Carbohydr. Polym. 2014, 113, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Waewthongrak, W.; Pisuchpen, S.; Leelasuphakul, W. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol. Technol. 2015, 99, 44–49. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Droby, S. Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharv. Rev. 2008, 2, 1–16. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Palou, E.; Jiménez Munguía, M.T.; Nevárez-Moorillón, G.V.; Navarro Cruz, A.R.; López-Malo, A. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Microbiol. 2012, 153, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, L.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. J. Food Eng. 2010, 98, 443–452. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties. J. Agric. Food Chem. 2008, 56, 11270–11278. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. J. Agric. Food Chem. 2009, 57, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges. Postharvest Biol. Technol. 2009, 54, 72–79. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on penicillium decay development and postharvest quality of cold-stored ‘Ortanique’ mandarins. J. Food Sci. 2010, 75, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Palou, L.; del Río, M.A.; Pérez-Gago, M.B. Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings containing food additives with antifungal properties during cold storage of ‘Clemenules’ mandarins. LWT-Food Sci. Technol. 2011, 44, 2342–2348. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.; Nigro, F.; Ippolito, A. Activity of salts incorporated in wax in controlling postharvest diseases of citrus fruit. Postharvest Biol. Technol. 2012, 65, 39–43. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. Substances generally recognized as safe, subpart A. Essential oils, oleoresins (solvent-free), and natural extractives (including distillates). Code Fed. Reg. 2000, 3, 475–477. [Google Scholar]
- Tripathi, P.; Dubey, N.K.; Banerji, R.; Chansouria, J.P.N. Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus fruits. World J. Microbiol. Biotech. 2004, 20, 317–321. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, A.; Chen, J.; Fu, Y. Impact of carboxymethyl cellulose coating enriched with extract of Impatiens balsamina stems on preservation of ‘Newhall’ navel orange. Sci. Hortic. 2013, 160, 44–48. [Google Scholar] [CrossRef]
- Velásquez, M.A.; Passaro, C.P.; Lara-Guzmán, O.J.; Álvarez, R.; Londono, J. Effect of an edible, fungistatic coating on the quality of the ‘Valencia’ orange during storage and marketing. Acta Hortic. 2014, 1016, 163–169. [Google Scholar] [CrossRef]
- du Plooy, W.; Regnier, T.; Combrinck, S. Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biol. Technol. 2009, 53, 117–122. [Google Scholar] [CrossRef]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.; Pérez-Alfonso, C.O.; Martínez-Romero, D.; Guillén, F.; Serrano, M.; Valero, D. The essential oils thymol and carvacrol applied in the packing lines avoid lemon spoilage and maintain quality during storage. Food Control 2014, 35, 132–136. [Google Scholar] [CrossRef]
- Fan, F.; Tao, N.; Jia, L.; He, X. Use of citral incorporated in postharvest wax of citrus fruit as a botanical fungicide against Penicillium digitatum. Postharvest Biol. Technol. 2014, 90, 52–55. [Google Scholar] [CrossRef]
- Tao, N.; Fan, F.; Jia, L.; Zhang, M. Octanal incorporated in postharvest wax of Satsuma mandarin fruit as a botanical fungicide against Penicillium digitatum. Food Control 2014, 45, 56–61. [Google Scholar] [CrossRef]
- Kouassi, K.H.S.; Bajji, M.; Jijakli, H. The control of postharvest blue and green molds of citrus in relation with essential oil-wax formulations, adherence and viscosity. Postharvest Biol. Technol. 2012, 73, 122–128. [Google Scholar] [CrossRef]
- Regnier, T.; Combrinck, S.; Veldman, W.; Du Plooy, W. Application of essential oils as multi-target fungicides for the control of Geotrichum citri-aurantii and other postharvest pathogens of citrus. Ind. Crop Prod. 2014, 61, 151–159. [Google Scholar] [CrossRef]
- McGuire, R.G.; Baldwin, E. Composition of cellulose coatings affect population of yeasts in the liquid formulation and on coated grapefruits. Proc. Fla. State Hort. Soc. 1994, 107, 293–297. [Google Scholar]
- McGuire, R.G.; Hagenmaier, R. Shellac coating for grapefruits that favor biological control of Penicillium digitatum by Candida oleophila. Biol. Control 1996, 7, 100–106. [Google Scholar] [CrossRef]
- McGuire, R.G.; Dimitroglou, D. Evaluation of shellac and sucrose ester fruit coating formulation that support biological control of post-harvest grapefruit decay. Biocontrol Sci. Technol. 1999, 9, 53–65. [Google Scholar] [CrossRef]
- McGuire, R.G. Application of Candida guilliermondii in commercial citrus coatings for biocontrol of Penicillium digitatum on grapefruits. Biol. Control 1994, 4, 1–7. [Google Scholar] [CrossRef]
- Potjewijd, R.; Nisperos-Carriedo, M.O.; Burns, J.K.; Parish, M.; Baldwin, E.A. Cellulose-based coatings as carriers for Candida guillermondii and Debaryomyces sp. in reducing decay of oranges. HortScience 1995, 30, 1417–1421. [Google Scholar]
- McGuire, R.G. Population dynamics of postharvest decay antagonist growing epiphytically and within wounds on grapefruit. Phytopathology 2000, 90, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Aloui, H.; Licciardello, F.; Khwaldia, K.; Hamdi, M.; Restuccia, C. Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int. J. Food Microbiol. 2015, 200, 22–30. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings 2015, 5, 962-986. https://doi.org/10.3390/coatings5040962
Palou L, Valencia-Chamorro SA, Pérez-Gago MB. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings. 2015; 5(4):962-986. https://doi.org/10.3390/coatings5040962
Chicago/Turabian StylePalou, Lluís, Silvia A. Valencia-Chamorro, and María B. Pérez-Gago. 2015. "Antifungal Edible Coatings for Fresh Citrus Fruit: A Review" Coatings 5, no. 4: 962-986. https://doi.org/10.3390/coatings5040962
APA StylePalou, L., Valencia-Chamorro, S. A., & Pérez-Gago, M. B. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 5(4), 962-986. https://doi.org/10.3390/coatings5040962