Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MoS2 NSs and PtNPs/MoS2 NSs
2.2. Fabrication of Various CEs and Assembly of DSSCs
2.3. Characterizations
3. Results
3.1. Nanostructural Features and Composition
3.2. Electrochemical Properties
3.3. Photovoltaic Performance of DSSCs
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oregan, B.; Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Galliano, S.; Bella, F.; Gerbaldi, C.; Falco, M.; Viscardi, G.; Gratzel, M.; Barolo, C. Photoanode/electrolyte interface stability in aqueous dye-sensitized solar cells. Energy Technol. 2017, 5, 300–311. [Google Scholar] [CrossRef]
- Dissanayake, M.A.K.L.; Kumari, J.M.K.W.; Senadeera, G.K.R.; Thotawatthage, C.A.; Mellander, B.E.; Albinsson, I. A novel multilayered photoelectrode with nitrogen doped TiO2 for efficiency enhancement in dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 2017, 349, 63–72. [Google Scholar] [CrossRef]
- Bella, F.; Pugliese, D.; Zolin, L.; Gerbaldi, C. Paper-based quasi-solid dye-sensitized solar cells. Electrochim. Acta 2017, 237, 87–93. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Falco, M.; Viscardi, G.; Barolo, C.; Gratzel, M.; Gerbaldi, C. Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chem. 2017, 19, 1043–1051. [Google Scholar] [CrossRef]
- Shanti, R.; Bella, F.; Salim, Y.S.; Chee, S.Y.; Ramesh, S.; Ramesh, K. Poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and targeted dye sensitized solar cell application. Mater. Des. 2016, 108, 560–569. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-based electrolytes for dye-sensitized solar cells: Recent advances towards stable devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef]
- Chang, L.H.; Hsieh, C.K.; Hsiao, M.C.; Chiang, J.C.; Liu, P.I.; Ho, K.K.; Ma, C.C.M.; Yen, M.Y.; Tsai, M.C.; Tsai, C.H. A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells. J. Power Sources 2013, 222, 518–525. [Google Scholar] [CrossRef]
- Hu, L.H.; Wu, F.Y.; Lin, C.T.; Khlobystov, A.N.; Li, L.J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, T.F.; Jorgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.L.; Zhang, W.X.; Hu, X.L.; Yuan, L.X.; Huang, Y.H. Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 3498–3504. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Zhang, H.M.; Liu, P.R.; Wang, Y.; Cao, J.; Zhao, H.J. Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv. 2014, 4, 21277–21283. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Cui, H.J.; Jia, S.P.; Zheng, J.F.; Wang, Z.J.; Zhu, Z.P. Dynamics investigation of graphene frameworks-supported Pt nanoparticles as effective counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2015, 178, 658–664. [Google Scholar] [CrossRef]
- Yeh, M.H.; Lin, L.Y.; Su, J.S.; Leu, Y.A.; Vittal, R.; Sun, C.L.; Ho, K.C. Nanocomposite graphene/Pt electrocatalyst as economical counter electrode for dye-sensitized solar cells. Chemelectrochem 2014, 1, 416–425. [Google Scholar] [CrossRef]
- Wan, T.H.; Chiu, Y.F.; Chen, C.W.; Hsu, C.C.; Cheng, I.C.; Chen, J.Z. Atmospheric-pressure plasma jet processed Pt-decorated reduced graphene oxides for counter-electrodes of dye-sensitized solar cells. Coatings 2016, 6, 44. [Google Scholar] [CrossRef]
- Yen, M.Y.; Teng, C.C.; Hsiao, M.C.; Liu, P.I.; Chuang, W.P.; Ma, C.C.M.; Hsieh, C.K.; Tsai, M.C.; Tsai, C.H. Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 12880–12888. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.A.; Kim, B.H.; Han, C.H.; Jun, Y. Reversely fabricated dye-sensitized solar cells. RSC Adv. 2014, 4, 243–247. [Google Scholar] [CrossRef]
- Anumol, E.A.; Kundu, P.; Deshpande, P.A.; Madras, G.; Ravishankar, N. New insights into selective heterogeneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: Rapid synthesis of high-activity supported catalysts. ACS Nano 2011, 5, 8049–8061. [Google Scholar] [CrossRef] [PubMed]
- Kibsgaard, J.; Chen, Z.B.; Reinecke, B.N.; Jaramillo, T.F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Tai, S.Y.; Chou, S.W.; Yu, Y.C.; Chang, K.D.; Wang, S.; Chien, F.S.S.; Lin, J.Y.; Lin, T.W. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 21057–21064. [Google Scholar] [CrossRef]
- Yuwen, L.H.; Xu, F.; Xue, B.; Luo, Z.M.; Zhang, Q.; Bao, B.Q.; Su, S.; Weng, L.X.; Huang, W.; Wang, L.H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Skeldon, P.; Thompson, G.E.; Wood, G.C. Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate. J. Mater. Sci. 1997, 32, 497–502. [Google Scholar] [CrossRef]
- Weber, T.; Muijsers, J.C.; Niemantsverdriet, J.W. Structure of amorphous MoS3. J. Phys. Chem. 1995, 99, 9194–9200. [Google Scholar] [CrossRef]
- Choi, H.; Kim, H.; Hwang, S.; Han, Y.; Jeon, M. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Mater. Chem. 2011, 21, 7548–7551. [Google Scholar] [CrossRef]
- Hsieh, C.K.; Tsai, M.C.; Su, C.Y.; Wei, S.Y.; Yen, M.Y.; Ma, C.C.M.; Chen, F.R.; Tsai, C.H. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells. Chem. Commun. 2011, 47, 11528–11530. [Google Scholar] [CrossRef] [PubMed]
- Roy-Mayhew, J.D.; Bozym, D.J.; Punckt, C.; Aksay, I.A. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 2010, 4, 6203–6211. [Google Scholar] [CrossRef] [PubMed]
Peak | Fitting of the Peak Binding Energy (eV) and Product | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt 4f | Pt04f7/2 | Pt04f5/2 | Pt2+4f7/2 | Pt2+4f5/2 | Pt4+4f7/2 | Pt4+4f5/2 | ||||||
71.2 (Pt) | 74.5 (Pt) | 72.0 (PtO) | 75.3 (PtO) | 73.6 (PtO2) | 76.9 (PtO2) | |||||||
Mo 3d | Mo4+3d5/2 | Mo4+3d3/2 | Mo5+3d5/2 | Mo5+3d3/2 | Mo6+3d5/2 | Mo6+3d3/2 | Mo6+3d5/2 | Mo6+3d3/2 | ||||
229.2 (MoS2) | 232.3 (MoS2) | 230.3 (Mo2S5) | 233.4 (Mo2S5) | 231.4 (MoS3) | 234.5 (MoS3) | 232.5 (MoO3) | 235.6 (MoO3) | |||||
S 2p | S2−2p3/2 | S2−2p1/2 | S22−2p3/2 | S22−2p1/2 | ||||||||
161.9 (MoS2) | 163.1 (MoS2) | 163.2 (Mo2S5, MoS3) | 164.4 (Mo2S5, MoS3) |
CE | Rs (Ω·cm2) | Rct (Ω·cm2) | ZN (Ω·cm2) | fct (kHz) | fN (Hz) | Iox (mA·cm−2) | Ired (mA·cm−2) | Epp (V) | J0 (mA·cm−2) | Jlim (mA·cm−2) |
---|---|---|---|---|---|---|---|---|---|---|
PtNPs/MoS2 NSs | 27.8 | 0.75 | 4.03 | 4.5 | 0.57 | 2.44 | −2.17 | 0.23 | 5.2 | 12.1 |
MoS2 NSs | 27.9 | 12.15 | 4.24 | 0.8 | 0.55 | 1.98 | −1.66 | 0.27 | 2.7 | 10.2 |
TD-Pt | 27.8 | 3.81 | 3.93 | 4.3 | 0.57 | 2.31 | −1.87 | 0.24 | 4.4 | 11.9 |
CE | Jsc (mA·cm−2) | Voc (V) | FF | η (%) |
---|---|---|---|---|
PtNPs/MoS2 NSs | 17.23 | 0.71 | 0.61 | 7.52 |
MoS2 NSs | 16.12 | 0.7 | 0.59 | 6.76 |
TD-Pt | 17.13 | 0.7 | 0.57 | 6.92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-K.; Lin, J.-Y.; Huang, K.-C.; Yeh, T.-K.; Hsieh, C.-K. Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles. Coatings 2017, 7, 167. https://doi.org/10.3390/coatings7100167
Cheng C-K, Lin J-Y, Huang K-C, Yeh T-K, Hsieh C-K. Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles. Coatings. 2017; 7(10):167. https://doi.org/10.3390/coatings7100167
Chicago/Turabian StyleCheng, Chao-Kuang, Jeng-Yu Lin, Kai-Chen Huang, Tsung-Kuang Yeh, and Chien-Kuo Hsieh. 2017. "Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles" Coatings 7, no. 10: 167. https://doi.org/10.3390/coatings7100167
APA StyleCheng, C. -K., Lin, J. -Y., Huang, K. -C., Yeh, T. -K., & Hsieh, C. -K. (2017). Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles. Coatings, 7(10), 167. https://doi.org/10.3390/coatings7100167