Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene) Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of Poly(styrene-co-acetoxystyrene)
2.1.2. Synthesis of Poly(styrene-co-hydroxystyrene)
2.2. Polymer Characterization
2.3. Optical Microscopy Measurement
2.4. Corrosion Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cost of Corrosion Study. Available online: https://www.nace.org/Publications/Cost-of-Corrosion-Study/ (accessed on 14 September 2018).
- Dariva, C.G.; Galio, A.F. Corrosion inhibitors—Principles, mechanisms and applications. In Developments in Corrosion Protection; Aliofkhazraei, M., Ed.; INTECH: Winchester, UK, 2014; pp. 365–379. [Google Scholar]
- DeBerry, D.W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 1985, 132, 1022–1026. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L.; Pan, C.; Li, D. Review of recent achievements in self-healing conductive materials and their applications. J. Mater. Sci. 2018, 53, 27–46. [Google Scholar] [CrossRef]
- Taghavikish, M.; Dutta, N.K.; Choudhury, N.R. Emerging corrosion inhibitors for interfacial coating. Coatings 2018, 7, 217. [Google Scholar] [CrossRef]
- Federica De Riccardis, M. Anticorrosion coatings based on conjugated polymers. In Fundamentals of Conjugated Polymer Blends, Copolymers, and Composites; Saini, P., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2015; pp. 519–579. [Google Scholar]
- Xiao, Y.; Ji, W.; Chang, K.; Hsu, K.; Yeh, J.; Liu, W. Sandwich-structured rGO/PVDF/PU multilayer coatings for anti-corrosion application. RSC Adv. 2017, 7, 33829–33836. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Li, C.; Yu, S.; Chen, P.; Chen, H.; Chen, R.; Hsu, C.; Yeh, J. Biomimetic electroactive polyimide with rose petal-like surface structure prepared from nanocasting technique for anticorrosive coating application. eXpress Polym. Lett. 2017, 11, 635–644. [Google Scholar] [CrossRef]
- Chuo, T.; Yeh, J.; Liu, Y. A reactive blend of electroactive polymers exhibiting synergistic effects on self-healing and anticorrosion properties. RSC Adv. 2016, 6, 55593–55598. [Google Scholar] [CrossRef]
- Chang, K.; Ji, W.; Li, C.; Chang, C.; Peng, Y.; Yeh, J.; Liu, W. The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of PMMA/reduced graphene oxide composites. eXPRESS Polym. Lett. 2014, 8, 908–919. [Google Scholar] [CrossRef]
- Chang, K.; Ji, W.; Li, C.; Hsu, S.; Chuang, T.; Wei, Y.; Yeh, J.; Liu, W. Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polym. Chem. 2014, 5, 1049–1056. [Google Scholar] [CrossRef]
- Yu, Y.; Yeh, J.; Jen, C.; Huang, H.; Wu, P.; Huang, C. Preparation and properties of poly(3-hexylthiophene)-clay nanocomposite materials. J. Appl. Polym. Sci. 2004, 91, 3438–3448. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, Y.; Lin, C.; Chan, C.; Huang, Y. High-performance polystyrene-/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 2014, 5, 535–550. [Google Scholar] [CrossRef]
- Nicho, M.E.; Medrano-Baca, M.G.; León-Silva, U.; Escalante, J.; González-Rodríguez, G.; Güizado-Rodríguez, M.; Linzaga-Elizalde, I. Effect of adhesion promoter in corrosion protection of 1018 mild steel by using poly(3-hexylthiophene) coatings in 0.5 M H2SO4 solution. Corrosion 2011, 67, 105002-1–105002-12. [Google Scholar] [CrossRef]
- Zhao, R.; Rupper, P.; Gaan, S. Recent development in phosphonic acid-based organic coatings on aluminum. Coatings 2017, 7, 133. [Google Scholar] [CrossRef]
- Samide, A.; Eugenia Iacobescu, G.; Tutunarur, B.; Grecu, R.; Tigae, C.; Spinu, C. Inhibitory properties of neomycin thin film formed on carbon steel in sulfuric acid solution: Electrochemical and AFM investigation. Coatings 2017, 7, 181. [Google Scholar] [CrossRef]
- Tallman, D.E.; Spinks, G.; Dominis, A.; Wallace, G.G. Electroactive conducting polymers for corrosion control. J. Solid State Electrochem. 2002, 6, 73–84. [Google Scholar] [CrossRef]
- Ahmad, N.; MacDiarmid, A.G. Inhibition of corrosion of steels with the exploitation of conducting polymers. Synth. Met. 1996, 78, 103–110. [Google Scholar] [CrossRef]
- Fahlman, M.; Jasty, S.; Epstein, A.J. Corrosion protection of iron/steel by emeraldine base polyaniline: An X-ray photoelectron spectroscopy study. Synth. Met. 1997, 85, 1323–1326. [Google Scholar] [CrossRef]
- Schauer, T.; Joos, A.; Dulog, L.; Eisenbach, C.D. Protection of iron against corrosion with polyaniline primers. Prog. Org. Coat. 1998, 33, 20–27. [Google Scholar] [CrossRef]
- Torresia, R.M.; Souzab, S.; Pereira da Silvaa, J.E.; Córdoba de Torresia, S.I. Galvanic coupling between metal substrate and polyaniline acrylic blends: Corrosion protection mechanism. Electrochim. Acta 2005, 50, 2213–2218. [Google Scholar] [CrossRef]
- Yong, K.C. Corrosion-inhibiting behavior of epoxidized natural rubber-polyaniline dodecylbenzene-sulfonate (ENR-PANI.DBSA) blends. Rubber Chem. Technol. 2014, 87, 526–537. [Google Scholar] [CrossRef]
- Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 2017, 406, 301–306. [Google Scholar] [CrossRef]
- Ren, S.; Barkey, D. Electrochemically prepared poly(3-methylthiophene) films for passivation of 430 stainless steel. J. Electrochem. Soc. 1992, 139, 1021–1026. [Google Scholar] [CrossRef]
- Medrano-Vaca, M.G.; Gonzalez-Rodriguez, J.G.; Nicho, M.E.; Casales, M.; Salinas-Bravo, V.M. Corrosion protection of carbon steel by thin films of poly(3-alkyl thiophenes) in 0.5M H2SO4. Electrochim. Acta 2008, 53, 3500–3507. [Google Scholar] [CrossRef]
- León-Silva, U.; Nicho, M.E. Poly(3-octylthiophene) and polystyrene blends thermally treated as coatings for corrosion protection of stainless steel 304. J. Solid State Electrochem. 2010, 14, 1487–1497. [Google Scholar] [CrossRef]
- Hernández-Martínez, D.; León-Silva, U.; Elena Nicho, M. Corrosion protection of steel by poly(3-hexyl thiophene) polymer blends. Anti-Corros. Methods Mater. 2015, 62, 229–240. [Google Scholar] [CrossRef]
Polymer | PDI | Td (°C) | Tg (°C) | ||
---|---|---|---|---|---|
PS | 155k | 253k | 1.6 | 417.6 | 101.9 |
PS-co-5PHS | 185k | 273k | 1.5 | 384.8 | 104.7 |
PS-co-10PHS | 121k | 203k | 1.7 | 373.8 | 109.1 |
Coating Layer | 100 Grid Test | Contact Angle (o) |
---|---|---|
P3HT, 25 °C | | 100.6 |
P3HT + PS, 25 °C | | 98.9 |
(P3HT + PS), 100 °C | | 101.0 |
(P3HT + PS), 200 °C | | 98.4 |
P3HT + PS-co-5PHS, 25 °C | | 102.6 |
P3HT + PS-co-5PHS, 100 °C | | 102.6 |
P3HT + PS-co-5PHS, 200 °C | | 98.6 |
P3HT + PS-co-10PHS, 25 °C | | 104.5 |
P3HT + PS-co-10PHS, 100 °C | | 102.9 |
P3HT + PS-co-10PHS, 200 °C | | 99.4 |
Coating Layer a | Rp (kΩ cm2) | Icorr (μA/cm−2) | Rcorr (MPY c) | PE b (%) | Thickness (μm) |
---|---|---|---|---|---|
bare-Fe | 4.20 | −15.38 | 7.02 | – | – |
P3HT, 25 °C | 44.1 | −1.03 | 0.47 | 97.8 | 10.0 |
P3HT + PS, 25 °C | 51.2 | −0.71 | 0.32 | 95.4 | 8.47 |
(P3HT + PS), 100 °C | 15.0 | −2.37 | 1.08 | 84.6 | 9.52 |
(P3HT + PS), 200 °C | 2.20 | −9.40 | 4.30 | 38.9 | 5.10 |
P3HT + PS-co-5PHS, 25 °C | 100 | −0.41 | 0.19 | 97.3 | 12.04 |
P3HT + PS-co-5PHS, 100 °C | 321 | −0.48 | 0.22 | 96.8 | 16.30 |
P3HT + PS-co-5PHS, 200 °C | 249 | −0.13 | 0.06 | 99.1 | 16.70 |
P3HT + PS-co-10PHS, 25 °C | 1357 | −0.25 | 0.11 | 98.4 | 13.63 |
P3HT + PS-co-10PHS, 100 °C | 2275 | −0.16 | 0.07 | 99.0 | 13.98 |
P3HT + PS-co-10PHS, 200 °C | 926 | −0.04 | 0.02 | 99.7 | 10.89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-C.; Yang, C.-R.; Tsai, J.-H.; Yu, Y.-H.; Huang, P.-T. Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene) Blends. Coatings 2018, 8, 383. https://doi.org/10.3390/coatings8110383
Tsai M-C, Yang C-R, Tsai J-H, Yu Y-H, Huang P-T. Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene) Blends. Coatings. 2018; 8(11):383. https://doi.org/10.3390/coatings8110383
Chicago/Turabian StyleTsai, Ming-Chia, Chung-Ru Yang, Jen-Hao Tsai, Yuan-Hsiang Yu, and Ping-Tsung Huang. 2018. "Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene) Blends" Coatings 8, no. 11: 383. https://doi.org/10.3390/coatings8110383
APA StyleTsai, M.-C., Yang, C.-R., Tsai, J.-H., Yu, Y.-H., & Huang, P.-T. (2018). Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene) Blends. Coatings, 8(11), 383. https://doi.org/10.3390/coatings8110383