Increase in Efficiency of End Milling of Titanium Alloys Due to Tools with Multilayered Composite Nano-Structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rahman, M.; Wang, Z.G.; Wong, Y.S. A review on high-speed machining of titanium alloys. J. Soc. Mech. Eng. Int. J. Ser. C 2006, 49, 11–20. [Google Scholar] [CrossRef]
- Boyer, R.R. Titanium for aerospace: Rationale and applications. Adv. Perform. Mater. 1995, 2, 349–368. [Google Scholar] [CrossRef]
- Peters, M.; Kumpfert, J.; Ward, C.H.; Leyens, C. Titanium alloys for aerospace applications. Adv. Eng. Mater. 2003, 5, 419–427. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Wang, Z.M. Titanium alloy and their machinability—A review. J. Mater. Proc. Technol. 1997, 68, 262–274. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.F.; Sun, J.; Jiang, F. Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2010, 46, 69–78. [Google Scholar] [CrossRef]
- Nouari, M.; Makich, H. Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti–6Al–4V and Ti-555. Int. J. Refract. Met. Hard Mater. 2013, 41, 259–269. [Google Scholar] [CrossRef]
- Sutter, G.; List, G. Very high speed cutting of Ti–6Al–4V titanium alloy—change in morphology and mechanism of chip formation. Int. J. Mach. Tools Manuf. 2013, 66, 37–43. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, W.; Duan, H.; Yang, G.; Xu, H.; Zhao, N. Influence of cutting speed on cutting force, flank temperature, and tool wear in end milling of Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2014, 70, 1835–1845. [Google Scholar] [CrossRef]
- Krishnaraja, V.; Samsudeensadhama, S.; Sindhumathia, R.; Kuppan, P. A study on high speed end milling of titanium alloy. Procedia Eng. 2014, 97, 251–257. [Google Scholar] [CrossRef]
- Cui, D.; Zhang, D.; Wu, B.; Luo, M. An investigation of tool temperature in end milling considering the flank wear effect. Int. J. Mech. Sci. 2017, 131–132, 613–624. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Hsu, S.-K.; Hsu, C.-C.; Ho, W.-F. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content. J. Mater. Eng. Perform. 2016, 25, 1986–1992. [Google Scholar] [CrossRef]
- Ramirez, C.; IdhilIsmail, A.; Gendarme, C.; Dehmas, M.; Aeby-Gautier, E.; Poulachon, G.; Rossi, F. Understanding the diffusion wear mechanisms of WC-10%Co carbide tools during dry machining of titanium alloys. Wear 2017, 390–391, 61–70. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Ehiasarian, A.P.; Petrov, I. TiAlCN/VCN nanolayer coatings suitable for machining of Al and Ti alloys deposited by combined high power impulse magnetron sputtering/unbalanced magnetron sputtering. Surf. Eng. 2010, 26, 610–614. [Google Scholar] [CrossRef]
- Safari, H.; Sharif, S.; Izman, S.; Jafari, H. Surface integrity characterization in high-speed dry end milling of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 2015, 78, 651–657. [Google Scholar] [CrossRef]
- Nouari, M.; Ginting, A. Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surf. Coat. Technol. 2006, 200, 5663–5676. [Google Scholar] [CrossRef]
- Liu, Z.; An, Q.; Xu, J.; Chen, M.; Han, S. Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear 2013, 305, 249–259. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Kovalev, A.I.; Aguirre, M.H.; Beake, B.D.; Yamamoto, K.; Veldhuis, S.C.; Endrino, J.L.; Wainstein, D.L.; Rashkovskiy, A.Y. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surf. Coat. Technol. 2009, 204, 489–496. [Google Scholar] [CrossRef]
- Biksa, A.; Yamamoto, K.; Dosbaeva, G.; Veldhuis, S.C.; Fox-Rabinovich, G.S.; Elfizy, A.; Wagg, T.; Shuster, L.S. Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribol. Int. 2010, 43, 1491–1499. [Google Scholar] [CrossRef]
- Akmal, M.; Layegh, S.E.; Lazoglua, I.; Akgun, A.; Yavas, C. Friction Coefficients on Surface finish of AlTiN Coated Tools in the Milling of Ti6Al4V. Procedia CIRP 2017, 58, 596–600. [Google Scholar] [CrossRef]
- Bhowmick, S.; Banerji, A.; Alpas, A.T. Tribological behavior and machining performance of non-hydrogenated diamond-like carbon coating tested against Ti–6Al–4V: Effect of surface passivation by ethanol. Surf. Coat. Technol. 2014, 260, 290–302. [Google Scholar] [CrossRef]
- Jawaid, A.; Sharif, S.; Koksal, S. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. J. Mater. Process. Technol. 2000, 99, 266–274. [Google Scholar] [CrossRef]
- Ghafoor, N.; Johnson, L.J.S.; Klenov, D.O.; Demeulemeester, J.; Desjardins, P.; Petrov, I.; Hultman, L.; Odén, M. Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases. APL Mater. 2013, 1, 022105. [Google Scholar] [CrossRef] [Green Version]
- Lamni, R.; Sanjinés, R.; Parlinska-Wojtan, M.; Karimi, A.; Lévy, F. Microstructure and nanohardness properties of Zr–Al–N and Zr–Cr–N thin films. J. Vac. Sci. Technol. A 2005, 23, 593–598. [Google Scholar] [CrossRef]
- Rogström, L.; Johansson, M.P.; Ghafoor, N.; Hultman, L.; Odén, M. Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films. J. Vac. Sci. Technol. A 2012, 30, 031504. [Google Scholar] [CrossRef]
- Rogström, L.; Ghafoor, N.; Schroeder, J.; Schell, N.; Birch, J.; Ahlgren, M.; Odén, M. Thermal stability of wurtzite Zr1−xAlxN coatings studied by in situ high-energy X-ray diffraction during annealing. J. Appl. Phys. 2015, 118, 035309. [Google Scholar] [CrossRef]
- Holec, D.; Rachbauer, R.; Chen, L.; Wang, L.; Luef, D.; Mayrhofer, P.H. Phase stability and alloy-related trends in Ti–Al–N, Zr–Al–N and Hf–Al–N systems from first principles. Surf. Coat. Technol. 2011, 206, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Mayrhofer, P.H.; Sonnleitner, D.; Bartosik, M.; Holec, D. Structural and mechanical evolution of reactively and non-reactively sputtered Zr–Al–N thin films during annealing. Surf. Coat. Technol. 2014, 244, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Vereschaka, A.S.; Vereschaka, A.A.; Sladkov, D.V.; Aksenenko, A.Y.; Sitnikov, N.N. Control of structure and properties of nanostructured multilayer composite coatings applied to cutting tools as a way to improve efficiency of technological cutting operations. J. Nano Res. 2016, 37, 51–57. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Grigoriev, S.N.; Sitnikov, N.N.; Batako, A. Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life. Wear 2017, 390–391, 209–219. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Vereschaka, A.S.; Bublikov, J.I.; Aksenenko, A.Y.; Sitnikov, N.N. Study of properties of nanostructured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. J. Nano Res. 2016, 40, 90–98. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.Y.; Kim, Y.M.; Shin, K.S.; Jung, W.S.; Han, J.G. Structure and mechanical properties of ZrCrAlN nanostructured thin films by closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 2007, 201, 5547–5551. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Fyodorov, S.V.; Sitnikov, N.N.; Batako, A.D. Comparative analysis of cutting properties and nature of wear of carbide cutting tools with multi-layered nano-structured and gradient coatings produced by using of various deposition methods. Int. J. Adv. Manuf. Technol. 2017, 90, 3421–3435. [Google Scholar] [CrossRef]
- Vereschaka, A.S.; Grigoriev, S.N.; Tabakov, V.P.; Sotova, E.S.; Vereschaka, A.A.; Kulikov, M.Yu. Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. Key Eng. Mater. 2014, 581, 68–73. [Google Scholar] [CrossRef]
- Adaskin, A.M.; Vereshchaka, A.A.; Vereshchaka, A.S. Study of wear mechanism of hard-alloy tools during machining of refractory alloys. J. Frict. Wear 2013, 34, 208–213. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Vereschaka, A.S.; Grigoriev, S.N.; Kirillov, A.K.; Khaustova, O.U. Development and research of environmentally friendly dry technological machining system with compensation of physical function of cutting fluids. Procedia CIRP 2013, 7, 311–316. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Bublikov, J.I.; Sitnikov, N.N.; Oganyan, G.V.; Sotova, C.S. Influence of nanolayer thickness on the performance properties of multilayer composite nano-structured modified coatings for metal-cutting tools. Int. J. Adv. Manuf. Technol. 2018, 95, 2625–2640. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Aksenenko, A.; Sitnikov, N.; Oganyan, G.; Seleznev, A.; Shevchenko, S. Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr,Al,Si)N coatings. Surf. Coat. Technol. 2019, 357, 218–234. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Grigoriev, S.N.; Sitnikov, N.N.; Oganyan, G.V.; Batako, A. Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti,Al)CN and Ti-TiCN-(Ti,Al,Cr)CN coatings: Analysis of cutting properties, wear mechanism and diffusion processes. Surf. Coat. Technol. 2017, 332, 198–213. [Google Scholar] [CrossRef]
- Vereschaka, A.; Aksenenko, A.; Sitnikov, N.; Migranov, M.; Shevchenko, S.; Sotova, C.; Batako, A.; Andreev, N. Effect of adhesion and tribological properties of modified composite nano-structured multi-layer nitride coatings on WC-Co tools life. Tribol. Int. 2018, 128, 313–327. [Google Scholar] [CrossRef]
- ASTM C1624-05 Standard Test Method for Adhesion Strength and Mechanical Failure Modes; ASTM International: West Conshohocken, PA, USA, 2010.
- Oliver, W.C.; Pharr, G.M.J. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Li, W.Z.; Evaristo, M.; Cavaleiro, A. Influence of Al on the microstructure and mechanical properties of Cr–Zr–(Al–)N coatings with low and high Zr content. Surf. Coat. Technol. 2012, 206, 3764–3771. [Google Scholar] [CrossRef]
Architecture of Coating | Parameters for Deposition Process | ||||||
---|---|---|---|---|---|---|---|
n (rev/min) | IZr (A) | IAl (A) | ITi (A) | ICr (A) | Ub (V) | PN (Pa) | |
Ti–TiN | 1.2 | – | – | 70 | – | −160 | 0.4 |
Ti–TiN–(Ti,Al)N | – | 160 | 60 | – | −160 | 0.4 | |
Zr–ZrN–(Zr,Al)N | 55 | 160 | 60 | – | −160 | 0.4 | |
Zr–ZrN–(Zr,Cr,Al)N | 55 | 170 | 60 | 75 | −160 | 0.4 |
Coating Type | Microhardness (HV) (GPa) | Critical Failure Force LC2 (N) |
---|---|---|
Ti–TiN | 27.1 | 32.7 |
Ti–TiN–(Ti,Al)N | 32.3 | 38.4 |
Zr–ZrN–(Zr,Al)N | 30.2 | >40 |
Zr–ZrN–(Zr,Cr,Al)N | 34.7 | >40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereschaka, A.; Oganyan, M.; Bublikov, Y.; Sitnikov, N.; Deev, K.; Pupchin, V.; Mokritskii, B. Increase in Efficiency of End Milling of Titanium Alloys Due to Tools with Multilayered Composite Nano-Structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings. Coatings 2018, 8, 395. https://doi.org/10.3390/coatings8110395
Vereschaka A, Oganyan M, Bublikov Y, Sitnikov N, Deev K, Pupchin V, Mokritskii B. Increase in Efficiency of End Milling of Titanium Alloys Due to Tools with Multilayered Composite Nano-Structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings. Coatings. 2018; 8(11):395. https://doi.org/10.3390/coatings8110395
Chicago/Turabian StyleVereschaka, Alexey, Maksim Oganyan, Yuri Bublikov, Nikolay Sitnikov, Konstantin Deev, Vladimir Pupchin, and Boris Mokritskii. 2018. "Increase in Efficiency of End Milling of Titanium Alloys Due to Tools with Multilayered Composite Nano-Structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings" Coatings 8, no. 11: 395. https://doi.org/10.3390/coatings8110395
APA StyleVereschaka, A., Oganyan, M., Bublikov, Y., Sitnikov, N., Deev, K., Pupchin, V., & Mokritskii, B. (2018). Increase in Efficiency of End Milling of Titanium Alloys Due to Tools with Multilayered Composite Nano-Structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N Coatings. Coatings, 8(11), 395. https://doi.org/10.3390/coatings8110395